CS 378 Lecture 17: Transformer Language Modeling
Announcements

- Custom FP proposals due today

Recap Attention
$v_{1} \ldots v_{n}$ values
$k_{1} \ldots k_{n}$, query q
scores $s_{i}=k_{i}{ }^{\top} q$
attu props $=$ softmax $(\bar{s}) \quad$ result: $\sum_{\alpha} \alpha_{i} \cdot v_{i}$
Self-attention: embeddings $e_{1} \ldots e_{n}$

$$
E \quad \operatorname{len} x d
$$

"Basic" form: let $Q=E$ lenjeries $K=E \quad$ rotter

Ienxlen

$$
s_{i j}: q_{i} \cdot k_{j}
$$

$$
\begin{aligned}
& S=Q K^{\top} \\
& (\text { len } x d) \times(d \times \text { len }) \\
& A=\underset{\substack{\text { softhax } \\
\text { (row) }}}{ }(S)
\end{aligned}
$$

Result: AE alternately: AV

Example POS tagging
$[100]\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$ We want to tag fed the fed as N or V
[010][001]
the $\rightarrow N$
; fed

$$
i \rightarrow V
$$

$$
\text { query }=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right] \quad \text { "find the" }
$$

$$
e=3
$$

Scores: $10 \Rightarrow \frac{3}{4} \frac{1}{4}$

$$
\begin{array}{llll}
t & f & & \\
o & 0 & \frac{1}{2} & \frac{1}{2} \\
i & f & &
\end{array}
$$

$$
\begin{gathered}
\text { result vectors: }\left[\begin{array}{c}
3 / 4 \\
0 \\
1 / 4
\end{array}\right] \stackrel{\text { found the }}{ }\left[\begin{array}{c}
0 \\
1 / 2 \\
1 / 2
\end{array}\right] \longleftrightarrow \text { did not find } \\
\text { the }
\end{gathered}
$$

fed $\left[\begin{array}{lll}0 & 0 & 1\end{array}\right] \Rightarrow$ query $\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$
"fed looks for the"

$$
\begin{array}{ll}
W^{Q}=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] & {\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right]} \\
W^{K}, W^{v} \text { matrices } & =\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]
\end{array}
$$

