
CS378:	Natural	Language	Processing	
Lecture	19:	MT	2,	Seq2seq	Models

Greg	DurreA

Recap

Outline

Vaswani	et	al.	(2017)

‣ Armed	with	the	idea	of	language	models	(P(w))	and	Transformers	(good	
models	for	this),	we	sOll	need	to	actually	put	together	an	MT	system

‣ Sequence-to-sequence	(seq2seq)	models:	we	define	these	as	
distribuOons	P(y|x)	and	decide	how	to	train	and	do	inference.	Training	
looks	like	LM	training,	inference	is	new.

‣ Subword	tokenizaOon:	key	pracOcal	implementaOon	detail

Seq2seq	Models

Transformers:	Complete	Model

Vaswani	et	al.	(2017)

‣ Transformer	encoder	(A4)	+	decoder	(looks	
back	at	encoder,	but	similar	architecture)

‣ Decoder	consumes	the	previous	generated	
tokens.	You	need	to	run	the	whole	decoder	to	
predict	token	1	of	the	output,	then	run	the	
decoder	again	to	predict	token	2,	etc.

‣ Decoder	alternates	aAenOon	over	the	output	
and	aAenOon	over	the	input	as	well

Seq2seq	Model
‣ Generate	next	word	condiOoned	on	previous	words	(like	a	language	
model)	and	condiOoned	on	the	source

the		movie		was			great <s>

h̄

‣ W	size	is	|vocab|	x	|hidden	state|,	so_max	over	enOre	vocabulary

Decoder	learns	to	both	
condiOon	on	x	and	generate	
plausible	sequences	y	(if	trained	
well/on	enough	data)

P (y|x) =
nY

i=1

P (yi|x, y1, . . . , yi�1)

P (yi|x, y1, . . . , yi�1) = softmax(Wh̄)y1
<latexit sha1_base64="7G4kLJYkX3D7/ov8pWJUOLn1JaM=">AAAGE3icjVTLbtQwFE3LDJTwamHJxqIaNVFDlbSVQEhFFWwQEtLw6ENq2shxPBmrecl2mhll/A9s+BU2LECILRt2/A2OkxQ6nbZYmszNOee+7Bv7WUQYt+3fc/PXOt3rNxZu6rdu37l7b3Hp/i5Lc4rwDkqjlO77kOGIJHiHEx7h/YxiGPsR3vOPX1b83gmmjKTJBz7O8GEMw4QMCIJcQt5Sx+y5MMqG0HMMZoIt4OJRZrjZkHjYYJZjuTHkQ39QjoRp6q2WG8zjSs3y2CuZV/LHjhCgodWb0aDm2ZAet/h00FOet05WFd8EkvMxn5lvVeVTrHoxGnA6nQIt+bg0Kbdad5U0wgNu1LlC4JIEuByPOI3LJKQwZjJz4UkCBSkHyKUkHPIqZJSGoG+Mt5xJYSETrAJ3QCEqHVEei6Z0suWIIxmvldqTwiNSrPf6RltgIapW+0bhOab6W5+cmhuVaUlI9hnJ9KxylCEUXCOSLYna+DpIxUkgqfZhSqGcJ21zJ4QRjgPwHibKua6+ZVGaJ1wYs8QWKEzxP0JTnM2YyP0rYMIBT0GYyud0SVcKXqfDBLQp3sAAhpAhSOv6I/kdBHKyL+/kohCXdnWBkylHY7U5GWXUFWzOrmBW/Gqmmm36ewYTt8yegSlpZknFc9sVExmlGq4CXKXTe8xz9N6onmk1bn75ThwFoB5iSGlagNFKzZe25bjiqAxWhD72HG9x2V6z1QLnDacxlrVm9b3FX26QojzGCUcRZOzAsTN+WELKCYqw0N2c4QyiYxjiA2kmMMbssFR3mgA9iQRgkFL5k+ev0H89SvkdsnHsS2XVB5vmKnAWd5DzwdPDkiRZznGC6kSDPKomrLogQUAoRjwaSwMiSmStAA2hPAUur1FdboIz3fJ5Y3d9zdlYW3+7ubz9otmOBe2h9kgzNEd7om1rr7S+tqOhzsfO587Xzrfup+6X7vfuj1o6P9f4PNDOrO7PP83BCWI=</latexit>

Transformer	encoder Decoder

Inference	(“Decoding”)

the		movie		was			great

‣ During	inference:	need	to	compute	the	argmax	over	the	word	predicOons	
and	then	run	the	next	step	of	the	decoder	(which	looks	back	at	all	
previous	encoder	+	decoder	steps)

le					

<s>

‣ Need	to	actually	evaluate	computaOon	graph	up	to	this	point

‣ Decoder	is	advanced	one	state	at	a	Ome	unOl	[STOP]	is	reached

film était bon [STOP]

Transformer	encoder Decoder

Training

‣ ObjecOve:	maximize

the		movie		was			great <s> le						film			était			bon

le

‣ One	loss	term	for	each	target-sentence	word,	feed	the	correct	word	
regardless	of	model’s	predicOon	(called	“teacher	forcing”).	Can	train	in	
“one	go”	like	the	language	model,	no	need	to	run	each	step	sequen<ally.

[STOP]était

X

(x,y)

nX

i=1

logP (y⇤i |x, y⇤1 , . . . , y⇤i�1)

Transformer	encoder Decoder

Training:	Scheduled	Sampling

‣ StarOng	with	p	=	1	(teacher	forcing)	and	decaying	it	works	best

‣ Scheduled	sampling:	with	probability	p,	take	the	gold	as	input,	else	take	
the	model’s	predicOon

the		movie		was			great

la						film			étais			bon	[STOP]

le film était

‣ Model	needs	to	do	the	right	thing	even	with	its	own	predicOons

Bengio	et	al.	(2015)

sample

‣ Not	really	used	these	days

<s>

Transformer	encoder Decoder

Decoding	Methods

Decoding	Strategies

Holtzman	et	al.	(2019)

‣ LMs	place	a	distribuOon	P(yi	|y1,	…,	yi-1)

‣ seq2seq	models	place	a	distribuOon	P(yi	|	x,	y1,	…,	yi-1)

‣ GeneraOon	from	both	models	looks	similar;	how	do	we	do	it?

‣ OpOon	1:	max	yi	P(yi	|y1,	…,	yi-1)	—	take	greedily	best	opOon

‣ OpOon	2:	use	beam	search	to	find	the	sequence	with	the	highest	prob.

‣ OpOon	3:	sample	from	the	model;	draw	yi	from	that	distribuOon

‣ Machine	translaOon:	use	beam	search.	The	top-scoring	hypothesis	is	
usually	a	great	translaOon

Decoding	Strategies

Holtzman	et	al.	(2019)

‣ Beam	search	degenerates	and	starts	
repeaOng.	If	you	see	a	fragment	
repeated	2-3x,	it	has	very	high	
probability	to	keep	repeaOng

‣ Story	generaOon	(this	is	with	GPT-2):

‣ Sampling	is	too	noisy	—	
introduces	many	grammaOcal	
errors

DegeneraOon

Holtzman	et	al.	(2019)

P(/	|	…	México)	and	P(Universidad	|	…	México	/)	—	these	probabiliOes	may	be	
low.	But	those	are	just	2/6	words	of	the	repeaOng	fragment

‣ Beam	search	fails	because	the	model	is	
locally	normalized

P(Nacional	|	…	Universidad)	is	high

P(Autónoma	|	…	Universidad	Nacional)	is	high

P(de	|		…	Universidad	Nacional	Autónoma)	is	high

P(México	|	Universidad	Nacional	Autónoma	de)	is	high

‣Each	word	is	likely	given	the	previous	words	but	the	sequence	is	bad

‣ Let’s	look	at	all	the	individual	decisions	
that	get	made	here

Drawbacks	of	Sampling

Holtzman	et	al.	(2019)

‣ Sampling	is	“too	random”

P(y	|	…	they	live	in	a	remote	desert	uninterrupted	by)

0.01				roads

0.01				towns

0.01				people

0.005		civilizaOon

…
0.0005			town

Good	opOons,	maybe	accounOng	for	90%	of	
the	total	probability	mass.	So	a	90%	chance	of	
geung	something	good

Long	tail	with	10%	of	the	mass

Nucleus	Sampling

Holtzman	et	al.	(2019)

‣ Define	a	threshold	p.	Keep	the	most	probable	opOons	account	for	p%	
of	the	probability	mass	(the	nucleus),	then	sample	among	these.

‣ To	implement:	sort	opOons	by	probability,	truncate	the	list	once	the	
total	exceeds	p,	then	renormalize	and	sample	from	it

P(y	|	…	they	live	in	a	remote	desert	uninterrupted	by)

0.01				roads

0.01				towns

0.01				people

0.005		civilizaOon
cut	off	a_er	p%	of	mass

renormalize	and	sample

Decoding	Strategies

Holtzman	et	al.	(2019)

‣ LMs	place	a	distribuOon	P(yi	|y1,	…,	yi-1)

‣ seq2seq	models	place	a	distribuOon	P(yi	|	x,	y1,	…,	yi-1)

‣ OpOon	1:	max	yi	P(yi	|y1,	…,	yi-1)	—	take	greedily	best	opOon

‣ OpOon	2:	use	beam	search	to	find	the	sequence	with	the	highest	prob.

‣ OpOon	3:	sample	from	the	model;	draw	yi	from	that	distribuOon

‣ OpOon	4:	nucleus	sampling

‣ How	to	generate	sequences?

Subword	TokenizaOon

Handling	Rare	Words

‣ Words	are	a	difficult	unit	to	work	with:	copying	can	be	cumbersome,	
word	vocabularies	get	very	large

‣ Character-level	models	were	explored	extensively	in	2016-2018	but	
simply	don’t	work	well	—	becomes	very	expensive	to	represent	
sequences

‣ When	you	have	100,000+	words,	the	final	matrix	mulOply	and	so_max	
start	to	dominate	the	computaOon

Subword	TokenizaOon

‣ Subword	tokenizaOon:	wide	range	of	schemes	that	use	tokens	that	are	
between	characters	and	words	in	terms	of	granularity

Sennrich	et	al.	(2016)

Input:	_the	_eco	tax	_port	i	co	_in			_Po	nt	-	de	-	Bu	is	…

‣ These	“word	pieces”	may	be	full	words	or	parts	of	words

‣ _	indicates	the	word	piece	starOng	a	word	(can	think	of	it	as	the	space	
character).	

Subword	TokenizaOon

‣ Subword	tokenizaOon:	wide	range	of	schemes	that	use	tokens	that	are	
between	characters	and	words	in	terms	of	granularity

Sennrich	et	al.	(2016)

Input:	_the	_eco	tax	_port	i	co	_in			_Po	nt	-	de	-	Bu	is	…

Output:	_le	_port	ique	_éco	taxe	_de	_Pont	-	de	-	Bui	s

‣ These	“word	pieces”	may	be	full	words	or	parts	of	words

‣ Can	achieve	transliteraOon	with	this,	subword	structure	makes	some	
translaOons	easier	to	achieve

Byte	Pair	Encoding	(BPE)

‣ Start	with	every	individual	byte	(basically	character)	as	its	own	symbol

Sennrich	et	al.	(2016)

‣ Count	bigram	character	
cooccurrences

‣ Merge	the	most	frequent	pair	of	
adjacent	characters

‣ Doing	8k	merges	=>	vocabulary	of	around	8000	word	pieces.	Includes	
many	whole	words

‣ Most	SOTA	NMT	systems	use	this	on	both	source	+	target

Byte	Pair	Encoding	(BPE)

Bostrom	and	DurreA	(2020)

‣ BPE	produces	less	linguisOcally	plausible	units	than	another	technique	
based	on	a	unigram	language	model:	rather	than	greedily	merge,	find	
chunks	which	make	the	sequence	look	likely	under	a	unigram	LM

TokenizaOon	Today

‣ All	pre-trained	models	use	some	kind	of	subword	tokenizaOon	with	a	
tuned	vocabulary;	usually	between	50k	and	250k	pieces	(larger	
number	of	pieces	for	mulOlingual	models)

‣ As	a	result,	classical	word	embeddings	like	GloVe	are	not	used.	All	
subword	representaOons	are	randomly	iniOalized	and	learned	in	the	
Transformer	models

Neural	MT

Results:	WMT	English-French

Classic	PBMT	system:	~33	BLEU,	uses	addiOonal	target-language	data

PBMT	+	rerank	w/LSTMs:	36.5	BLEU	(long	line	of	work	here;	Devlin+	2014)

Sutskever+	(2014)	seq2seq	single:	30.6	BLEU	(input	reversed)

Sutskever+	(2014)	seq2seq	ensemble:	34.8	BLEU

‣ But	English-French	is	a	really	easy	language	pair	and	there’s	tons	of	data	
for	it!	Does	this	approach	work	for	anything	harder?

Luong+	(2015)	seq2seq	ensemble	with	aAenOon	and	rare	word	handling:	
37.5	BLEU

‣ 12M	sentence	pairs

Results:	WMT	English-German

‣ Not	nearly	as	good	in	absolute	BLEU,	but	BLEU	scores	aren’t	really	
comparable	across	languages

Classic	phrase-based	system:	20.7	BLEU

Luong+	(2014)	seq2seq:	14	BLEU

‣ French,	Spanish	=	easiest	
German,	Czech	=	harder	
Japanese,	Russian	=	hard	(grammaOcally	different,	lots	of	morphology…)

Luong+	(2015)	seq2seq	ensemble	with	rare	word	handling:	23.0	BLEU

‣ 4.5M	sentence	pairs

MT	Examples

Luong	et	al.	(2015)

‣ NMT	systems	can	hallucinate	words,	especially	when	not	using	aAenOon	
—	phrase-based	doesn’t	do	this

‣ best	=	with	aAenOon,	base	=	no	aAenOon

MT	Examples

Luong	et	al.	(2015)

‣ best	=	with	aAenOon,	base	=	no	aAenOon

Google	NMT	(2016)

Google’s	NMT	System	(2016)

Wu	et	al.	(2016)

‣ 8-layer	LSTM	encoder-decoder	with	aAenOon,	word	piece	vocabulary	of	
8k-32k	

Google’s	NMT	System	(2016)

Wu	et	al.	(2016)

Luong+	(2015)	seq2seq	ensemble	with	rare	word	handling:	37.5	BLEU

Google’s	32k	word	pieces:	38.95	BLEU

Google’s	phrase-based	system:	37.0	BLEU

English-French:

Luong+	(2015)	seq2seq	ensemble	with	rare	word	handling:	23.0	BLEU

Google’s	32k	word	pieces:	24.2	BLEU

Google’s	phrase-based	system:	20.7	BLEU

English-German:

Human	EvaluaOon	(En-Es)

Wu	et	al.	(2016)

‣ Similar	to	human-level	
performance	on	
English-Spanish

Transformer	MT	+	FronOers

Transformers

Vaswani	et	al.	(2017)

‣ Big	=	6	layers,	1000	dim	for	each	token,	16	heads,	
base	=	6	layers	+	other	params	halved

FronOers	in	MT:	Small	Data

Sennrich	and	Zhang	(2019)
‣ SyntheOc	small	data	seung:	German	->	English

FronOers	in	MT:	Low-Resource

Aji	et	al.	(2020)

‣ ParOcular	interest	in	deploying	MT	systems	for	languages	with	liAle	or	no	
parallel	data

Burmese,	Indonesian,	Turkish

‣ BPE	allows	us	to	transfer	
models	even	without	
training	on	a	specific	
language

‣ Pre-trained	models	can	
help	further

FronOers	in	MT:	MulOlingual	Models

Yinhan	Liu	et	al.	(2020)

FronOers	in	MT:	MulOlingual	Models

Yinhan	Liu	et	al.	(2020)
‣ Random	=	random	iniOalizaOon

FronOers	in	MT:	MulOlingual	Models

Yinhan	Liu	et	al.	(2020)

Takeaways

‣ Transformers	are	state-of-the-art	for	machine	translaOon

‣ They	work	really	well	on	languages	where	we	have	a	ton	of	data.	When	
they	don’t:	pre-training	can	help

‣ Next	up:	exploring	pre-training	in	more	detail	(ELMo,	BERT,	GPT,	etc.)

