CS 378 Lecture 2 Classification 1: Features, Perception

Announcements

- Al released (due 9/8)

- Book notation diverges from lectures

Today - Classification (linear, binary)

- Feature extraction
- ML basics + Perceptron

Classification Points $\bar{x} \in \mathbb{R}^{n}$
$f(\bar{x}) \in \mathbb{R}^{n}$ feature extractor
Label $y \in\{-1,+1\}$
Classifier maps $\bar{x} \rightarrow y$

Linear classifier: represented by a weight vector $\bar{w} \in \mathbb{R}^{n}$ Decision rule: $\bar{w}^{\top} f(\bar{x})^{-x /} ? 0$ $\underbrace{\bar{W} \cdot f(\bar{x})}_{\text {a real number }}$ is greater than 0?

Sentiment Analysis
$\bar{x}=$ the movie was great! would watch again!
(1) Feature extraction

$$
\bar{x} \Rightarrow f(\bar{x})
$$

string \mathbb{R}^{n}
(2) Learning training set

$$
\left\{\left(f\left(\bar{x}^{(i)}\right), y^{(i)}\right)\right\}_{i=1}^{D} \Rightarrow \bar{W}
$$

1) labeled examples

Feature Extraction
$\bar{x}=$ the movie was great
Bag-of-words featurization
$\left[\begin{array}{ccccccc}1 & 0 & 0 & \cdots & 1 & 1 & \cdots\end{array}\right]$
Vocabulary of
value is ~10,000 words the count of that word in \bar{x} weight vector $\bar{w} \in \mathbb{R}^{n}$

$$
\left[\begin{array}{cccc}
-0.1 & +0.2 & \ldots & +10 \\
\text { the a } & & \text { great }
\end{array}\right]
$$

Preprocessing
(0) Vocab selection: need a fixed set of words for the vector space
replace unseen words it UNK
(1) Tokenization
wasn't great! [wasn't great! great $\left.\begin{array}{ccc}1 & 1 & 0\end{array}\right]$
typical tokenizatios:

- break out punctuation
- break out contractions was n't great!
(2) Stopword filtering:
- prepositions
$-a$, the
- pronouns (maybe for debasing)
(3) Lower casing / Stemming Fix typos?

So far: unigram BoW

Bigram Bow

$$
\left[\begin{array}{lll}
1 & 1 & 0
\end{array}\right]
$$

the movie movie was not good

$$
\text { "Vocab" }=\text { Vocab }{ }^{2}
$$

Unigram: 10 K Bigram =
$(10 K)^{2}$ in theory $1 M$ in practice
Maintain an index can combine:

$$
\left[\begin{array}{c}
\text { the: } 0 \\
a: 1 \\
\text { movie: } 47
\end{array}\right]\left[\begin{array}{c}
\text { the:0 } \\
\text { was great: } 1172 \\
\vdots
\end{array}\right]
$$

Machine Learning
Optimize parameters \bar{w} to Fit some training data $\left(\bar{x}^{(i)}, y^{(i)}\right)_{i=1}^{D}$
Find the best $w \in \mathbb{R}^{n}$
Training objective: loss (dataset)

$$
\operatorname{loss}=\sum_{i=1}^{D} \operatorname{coss}\left(\bar{x}^{(i)}, y^{(i)}, \bar{w}\right)
$$

"if we use \bar{w} as our weights, how badly do we screw up ex. (i)"
(sample i)
Stochastic gradient descent
for t in range (0, epochs) for i in range $(0, D)$

$$
\begin{aligned}
& \bar{w} \leftarrow \bar{w}-\alpha \cdot \frac{\partial}{\partial \bar{w}} \operatorname{loss}\left(\bar{x}^{(i)}, \frac{y^{(i)}}{\bar{w}}\right) \\
& \operatorname{ste}^{\mu} \text { size } \\
& \approx 1
\end{aligned}
$$

Update \bar{w} by subtracting gradient of the loss

Perception (instance of SGD)
Initialize $\bar{w}=\overline{0}$
for t in $\operatorname{rage}(0, e$ pocks) for i in rage $(0, D) \begin{gathered}\text { (shuffle } \\ \text { ex each } \\ \text { ex }\end{gathered}$

$$
\begin{aligned}
& y_{\text {pred }} \leftarrow \begin{cases}1 & \bar{w}^{\top} f\left(\bar{x}^{(i)}\right)>0 \\
-1 & \text { else }\end{cases} \\
& \bar{w} \leftarrow\left\{\begin{array}{lll}
\bar{w} & \text { if } & y_{p r e d}=y^{(i)} \\
\bar{w}+\alpha f\left(\bar{x}^{(i)}\right) & \text { if } \\
\overline{(i)}+1
\end{array}\right. \\
& \bar{w}-\alpha f\left(\bar{x}^{(i)}\right) \text { if }
\end{aligned}
$$

$$
\text { Let } \alpha=1 \text { for now } \alpha+\left(x, y^{c i} \leq-1\right.
$$

\bar{w}

$$
\bar{w}+f\left(\bar{x}^{c}\right)
$$

Suppose

$$
\bar{w}^{\top} f\left(\bar{x}^{(i)}\right) \Rightarrow-1.3
$$

$$
y^{(i)}=+1
$$

After update:

$$
\begin{aligned}
& \left(\bar{w}+f\left(\bar{x}^{(i)}\right)\right)^{\top} f\left(\bar{x}^{(i)}\right) \\
& \bar{w}^{\top} f\left(\bar{x}^{(i)}\right)+\underbrace{f\left(\bar{x}^{(i)}\right)^{\top} f\left(\bar{x}^{(i)}\right)} \\
& \text { larger than }-1.3
\end{aligned}
$$

$$
-1.3
$$

