CS378: Natural Language Processing Lecture 23: Interpretability

Announcements Final project check-ins due November 18 Final projects due December 9

Greg Durrett

Recap

- Dataset artifacts / spurious correlations
- Single-word correlations in NLI: hypothesis contains not -> contradiction
- Answer type bias in QA: where -> return any reasonable location
- Various debiasing techniques:
 - Understand what examples are contributing to the bias
 - Reweighting training data to remove those examples
 - Data augmentation (not discussed)

۲

Today

- Why is it so surprising when these model failures happen? Why can't we just look at why they make their predictions?
- Interpreting neural networks: what does this mean and why should we care?
- Local explanations: erasure techniques
- Gradient-based methods
- Evaluating explanations

Interpreting Neural Networks

Interpreting Neural Networks

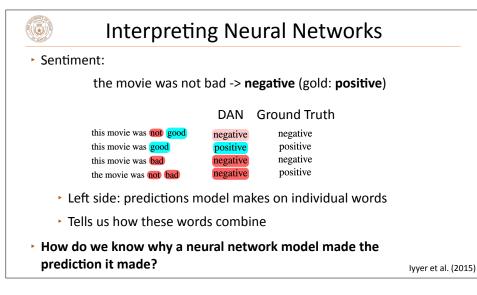
This is a BERT-based QA model. How do we figure out why it picked Stewart over Devin Funchess?

Question: who caught a 16-yard pass on this drive? Answer: devin funchess

Start Distribution

Green: Heatmap of posterior probabilities over the **start** of the answer span

there would be no more scoring in the third quarter , but early in the fourth , the broncos drove to the panthers 41-yard line . on the next play , ealy knocked the ball out of manning 's hand as he was winding up for a pass , and then recovered it for carolina on the 50-yard line . a 16-yard reception by devin funchess and a 12-yard run by stewart then set up gano 's 39-yard field goal , cutting the panthers deficit to one score at 16â€"10 . the next three drives of the game would end in punts .



Why explanations?

- Trust: if we see that models are behaving in human-like ways and making human-like mistakes, we might be more likely to trust them and deploy them
- **Causality:** if our classifier predicts class y because of input feature x, does that tell us that x causes y? Not necessarily, but it might be helpful to know
- ▶ Informativeness: more information may be useful (e.g., predicting a disease diagnosis isn't that useful without knowing more about the patient's situation)
- Fairness: ensure that predictions are non-discriminatory

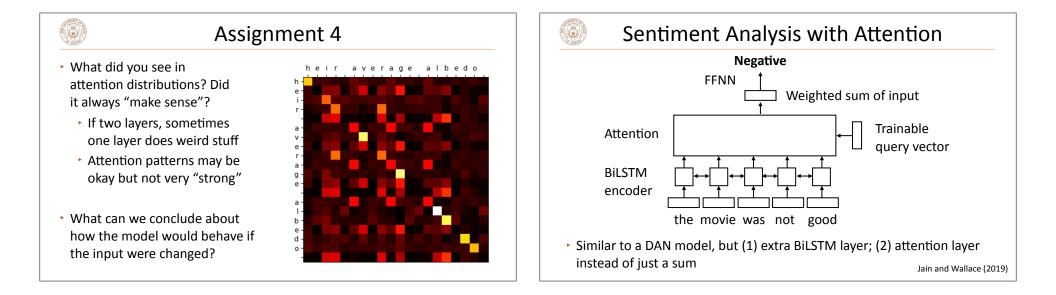
Why explanations?

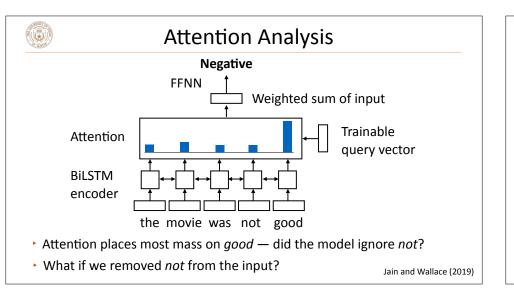
- Some models are naturally transparent: we can understand why they do what they do (e.g., a decision tree with <10 nodes)
- Explanations of more complex models
 - Local explanations: highlight what led to this classification decision.
 (Counterfactual: if these features were different, the model would've predicted a different class) focus of this lecture
 - ▶ Text explanations: describe the model's behavior in language
 - Model probing: auxiliary tasks, challenge sets, adversarial examples to understand more about how our model works

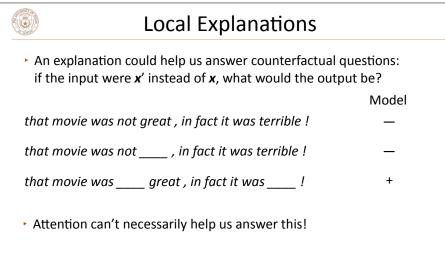
Lipton (2016); Belinkov and Glass (2018)

Local Explanations

(which parts of the input were responsible for the model's prediction on this particular data point?)







 Erasure Method Delete each word one by and one and see how prediction prob changes 		
movie	was not great , in fact it was terrible !	— prob = 0.97
that	was not great , in fact it was terrible !	— prob = 0.98
that movie	not great, in fact it was terrible !	— prob = 0.97
that movie	was great, in fact it was terrible !	— prob = <mark>0.8</mark>
that movie	was not, in fact it was terrible !	— prob = <mark>0.99</mark>

۲

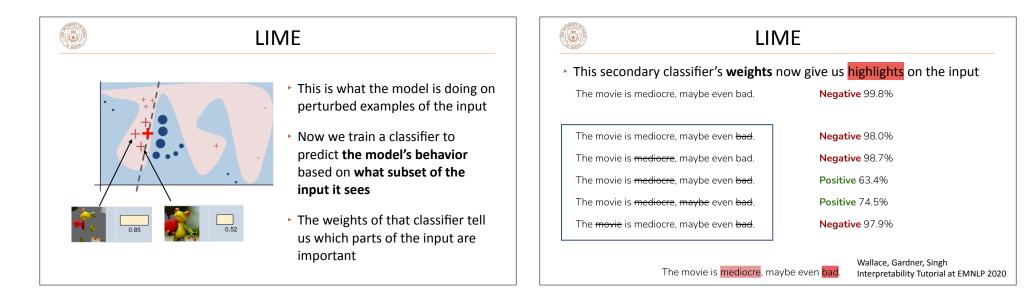
Erasure Method

 Output: highlights of the input based on how strongly each word affects the output

that movie was not great , in fact it was terrible !

- not contributed to predicting the negative class (removing it made it less negative), great contributed to predicting the positive class (removing it made it more negative)
- Will this work well?
 - Inputs are now unnatural, model may behave in "weird" ways
 - Saturation: if there are two features that each contribute to negative predictions, removing each one individually may not do much

LIME LIME (i) Locally-interpretable, model-agnostic explanations (LIME) turbed Instances P(tree frog 0.85 Similar to erasure method, but we're going to delete collections of things at once 0.00001 **Original Image** Interpretable Can lead to more realistic input (although people often just delete Components words with it) Break input into components More scalable to complex settings (for text: could use words, Check predictions on > Now we have model phrases, sentences, ...) subsets of those predictions on perturbed examples https://www.oreilly.com/learning/introduction-to-local-Ribeiro et al. (2016) interpretable-model-agnostic-explanations-lime

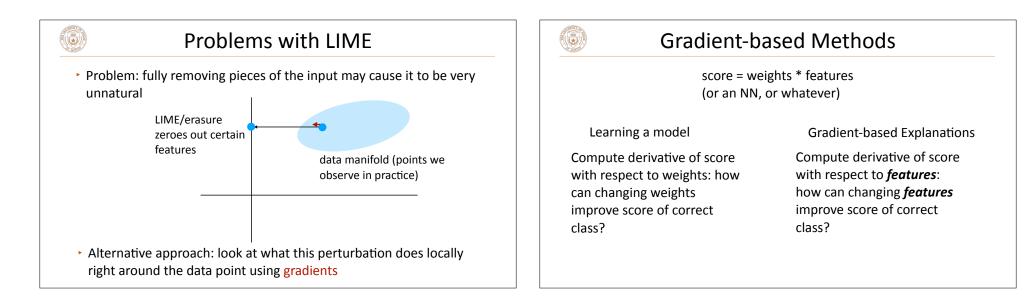


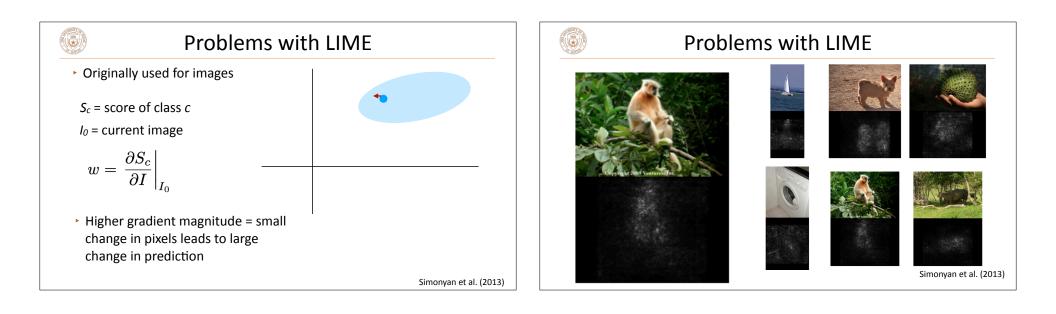
۲

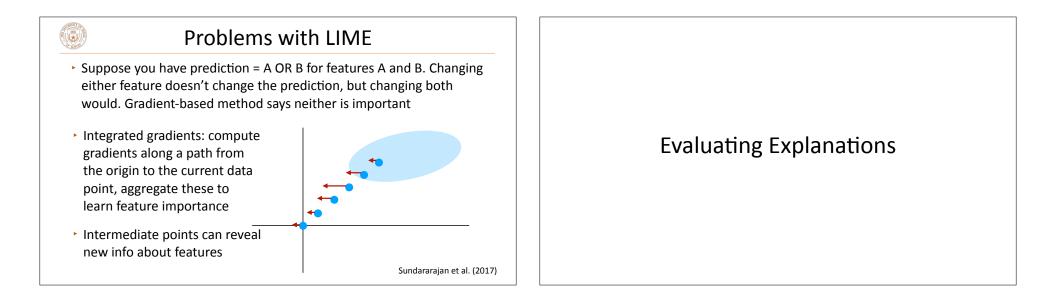
Problems with LIME

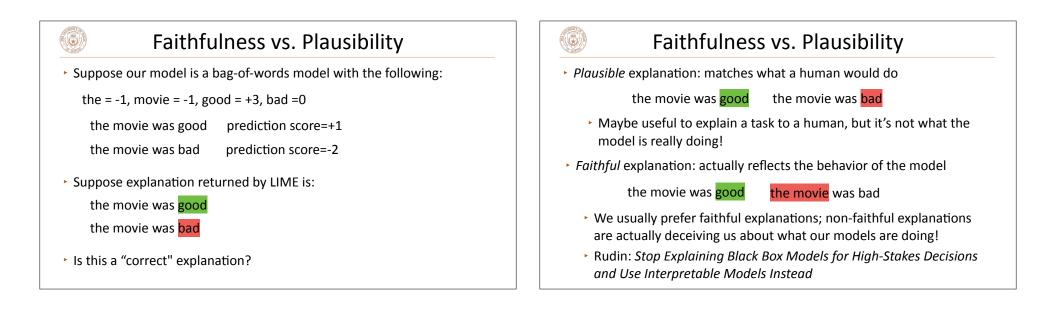
- Lots of moving parts here: what perturbations to use? what model to train? etc.
- Expensive to call the model all these times
- Linear assumption about interactions may not be reliable

Gradient-based Methods



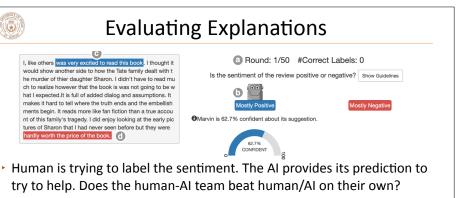




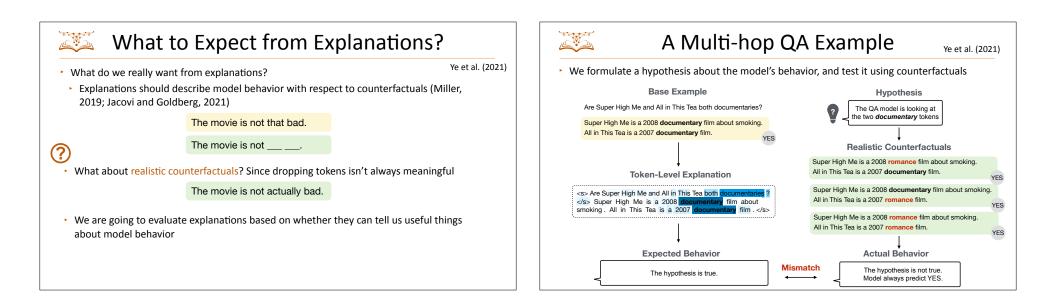


Evaluating Explanations

- Nguyen (2018): delete words from the input and see how quickly the model flips its prediction?
 - Downside: not a "real" use case
- Hase and Bansal (2020): counterfactual simulatability: user should be able to predict what the model would do in another situation
 - Hard to evaluate



- Al provides both an explanation for its prediction (blue) and also a possible counterargument (red)
- Do these explanations help the human? Slightly, but AI is still better
- Few positive results on "human-AI teaming" with explanations Bansal et al. (2020)



Ongoing Conversation

Lots of ongoing research:

25

- How do we interpret explanations?
- How do users interpret our explanations?
- How should automated systems make use of explanations?
- Still a growing area

Packages

- AllenNLP Interpret: https://allennlp.org/interpret
- Captum (Facebook): https://captum.ai/
- LIT (Google): https://ai.googleblog.com/2020/11/the-language-interpretability-tool-lit.html
- Various pros and cons to the different frameworks

Takeaways

- Many other ways to do explanation:
 - Probing tasks: do vectors capture information about part-of-speech tags?
 - Diagnostic test sets ("unit tests" for models)
 - Building models that are explicitly interpretable (decision trees)

Wallace, Gardner, Singh Interpretability Tutorial at EMNLP 2020

