
CS378:	Natural	Language	Processing	
Lecture	24:	Ques:on	Answering

Greg	Durre?

Administrivia

‣ A4	back,	A5	back	soon

‣ Final	project	check-ins	due	on	Friday

‣ Extra	credit	for	eCIS	on	final	project

‣ Colin	Raffel	talk	Friday

Previously:	SQuAD

Passage:	One	of	the	most	famous	people	born	in	Warsaw	was	Marie	Skłodowska-Curie,	
who	achieved	interna:onal	recogni:on	for	her	research	on	radioac:vity	and	was	the	
first	female	recipient	of	the	Nobel	Prize.	Famous	musicians	include	Władysław	Szpilman	
and	Frédéric	Chopin.	Though	Chopin	was	born	in	the	village	of	Żelazowa	Wola,	about	60	
km	(37	mi)	from	Warsaw,	he	moved	to	the	city	with	his	family	when	he	was	seven	
months	old.	Casimir	Pulaski,	a	Polish	general	and	hero	of	the	American	Revolu:onary	
War,	was	born	here	in	1745.

Q:	What	was	Marie	Curie	the	first	female	recipient	of?

‣ Assume	we	know	a	passage	that	contains	the	answer

Answer	=	Nobel	Prize

Types	of	QA

‣ What	were	the	main	causes	of	World	War	II?	—	requires	summariza:on

‣ Can	you	get	the	flu	from	a	flu	shot?	—	want	IR	to	provide	an	
explana:on	of	the	answer,	not	just	yes/no

‣ How	long	should	I	soak	dry	pinto	beans?

‣ What	was	Marie	Curie	the	first	female	recipient	of?	—	could	be	
wri?en	down	in	a	KB	but	probably	isn’t

‣ When	as	Marie	Curie	born?	—	we	should	just	find	this	in	a	
knowledge	base



QA	Pipeline Three	Approaches	to	QA

‣ Answering	ques:ons	from	a	passage:	done	(this	was	SQuAD)

‣ Answering	ques:ons	from	a	knowledge	base:	requires	synthesizing	a	
query	(lambda	calculus,	SQL,	etc.)

‣ Answering	ques:ons	from	the	web:	requires	finding	text	that	contains	
the	answer

‣ Today:	seman;c	parsing

‣ Today:	retrieval	models

Seman:c	Parsing

Logical	Forms	I



Logical	Forms	II Montague	Seman:cs

NP VP

NNP NNP

S

VBP
Lady			Gaga sings

e470

λy. sings(y)
takes	one	argument	(y,	the	en:ty)	and	
returns	a	logical	form	sings(y)

λy. sings(y)

sings(e470)

‣ We	can	use	the	syntac:c	parse	as	a	bridge	to	the	lambda-calculus	
representa:on,	build	up	a	logical	form	(our	model)	composiAonally

func:on	applica:on:	apply	this	to	e470
ID

Combinatory	Categorial	Grammar
‣ Steedman+Szabolcsi	(1980s):	formalism	bridging	syntax	and	seman:cs

‣ Syntac:c	categories	(for	this	lecture):	S,	NP,	
“slash”	categories

‣ S\NP:	“if	I	combine	with	an	NP	on	my	
lep	side,	I	form	a	sentence”	—	verb

NP S\NP

Eminem sings

e728 λy. sings(y)

S
sings(e728)

‣ Parallel	deriva:ons	of	syntac:c	parse	and	lambda	calculus	expression

‣ When	you	apply	this,	there	has	to	be	a	
parallel	instance	of	func:on	
applica:on	on	the	seman:cs	side

Combinatory	Categorial	Grammar
‣ Steedman+Szabolcsi	(1980s):	formalism	bridging	syntax	and	seman:cs

‣ Syntac:c	categories	(for	this	lecture):	S,	NP,	“slash”	categories
‣ S\NP:	“if	I	combine	with	an	NP	on	my	lep	side,	I	form	a	sentence”	—	verb

‣ (S\NP)/NP:	“I	need	an	NP	on	my	right	and	then	on	my	lep”	—	verb	
with	a	direct	object

NP S\NP

Eminem sings

e728 λy. sings(y)

S
sings(e728)

NP (S\NP)/NP

Oklahoma borders
e101

Texas

e89
NP

λx.λy borders(y,x)

S\NP
λy borders(y,e89)

S
borders(e101,e89)



CCG	Parsing

Ze?lemoyer	and	Collins	(2005)

‣ “What”	is	a	very	complex	type:	needs	a	noun	and	needs	a	S\NP	to	
form	a	sentence.	S\NP	is	basically	a	verb	phrase	(border	Texas)

CCG	Parsing

Ze?lemoyer	and	Collins	(2005)

‣ “What”	is	a	very	complex	type:	needs	a	noun	and	needs	a	S\NP	to	
form	a	sentence.	S\NP	is	basically	a	verb	phrase	(border	Texas)

‣ What	in	this	case	knows	that	there	are	two	predicates	(states	and	
border	Texas).	This	is	not	a	general	thing

CCG	Parsing

‣ These	ques:on	are	composiAonal:	we	can	build	bigger	ones	out	of	
smaller	pieces

What	states	border	Texas?

What	states	border	states	bordering	Texas?

What	states	border	states	bordering	states	bordering	Texas?

Training	CCG	Parsers

Ze?lemoyer	and	Collins	(2005)

‣ Very	hard	to	build	a	conven:onal	parser	for	this	problem

‣ Unlike	PCFGs,	we	don’t	know	which	words	yielded	which	fragments	of	CCG

‣ Training	data	looks	like	pairs	of	sentences	and	logical	forms

What	states	border	Texas λx. state(x) ∧ borders(x, e89)

What	borders	Texas λx. borders(x, e89)
…



Seman:c	Parsing	as	Transla:on

Jia	and	Liang	(2016)

‣ Write	down	a	linearized	form	of	the	seman:c	parse,	train	seq2seq	models	
to	directly	translate	into	this	representa:on	(similar	to	code	genera:on	
like	GitHub	Copilot)

‣ What	might	be	some	concerns	about	this	approach?	How	do	we	mi:gate	
them?

“what	states	border	Texas”

lambda x ( state ( x ) and border ( x , e89 ) ) )

‣ What	are	some	benefits	of	this	approach	compared	to	grammar-based?

Seman:c	Parsing	as	Transla:on

Jia	and	Liang	(2016)

‣ Prolog

‣ Lambda	calculus

‣ Other	DSLs

‣ Handle	all	of	these	with	uniform	machinery!

Applica:ons

‣ GeoQuery	(Zelle	and	Mooney,	1996):	answering	ques:ons	about	
states	(~80%	accuracy)

‣ Jobs:	answering	ques:ons	about	job	pos:ngs	(~80%	accuracy)

‣ ATIS:	flight	search

‣ Can	do	well	on	all	of	these	tasks	if	you	handcrap	systems	and	use	
plenty	of	training	data:	these	domains	aren’t	that	rich

Retrieval	Models



Types	of	QA
How	long	should	I	soak	dry	pinto	beans?

show	snippet	to	user	(answer	extracAon)

execute	search	(retrieval)

Open-domain	QA

‣ SQuAD-style	QA	from	a	paragraph	is	very	ar:ficial,	not	a	real	applica:on

‣ Real	QA	systems	should	be	able	to	handle	more	than	just	a	paragraph	of	
context	—	theore:cally	should	work	over	the	whole	web?

Q:	What	was	Marie	Curie	the	recipient	of?

Marie	Curie	was	awarded	the	Nobel	Prize	in	Chemistry	and	
the	Nobel	Prize	in	Physics…

Mother	Teresa	received	the	Nobel	Peace	Prize	in…

Curie	received	his	doctorate	in	March	1895…

Skłodowska	received	accolades	for	her	early	work…

Open-domain	QA

‣ Real	QA	systems	should	be	able	to	handle	more	than	just	a	paragraph	of	
context	—	theore:cally	should	work	open-domain	over	the	whole	web

‣ Open-domain	QA	pipeline:	given	a	ques:on:

‣ Retrieve	some	documents	with	an	IR	system,	usually	either	classic	IR	(z-
idf,	indexed	documents)	or	dense	neural	system

‣ Zero	in	on	the	answer	in	those	documents	with	a	QA	model	—	this	part	
looks	very	similar	to	SQuAD

‣ SQuAD-style	QA	from	a	paragraph	is	very	ar:ficial,	not	a	real	applica:on

DrQA

Chen	et	al.	(2017)

‣ Uses	Lucene,	basically	
sparse	z-idf	vectors.	
How	open	does	the	
retrieved	context	
contain	the	answer?

‣ Full	retrieval	results	
using	a	QA	model	
trained	on	SQuAD:	task	
is	much	harder	



Problems

Lee	et	al.	(2019)

‣ Many	SQuAD	ques:ons	are	not	suited	to	the	“open”	se{ng	because	
they’re	underspecified

‣ SQuAD	ques:ons	were	wri?en	by	people	looking	at	the	passage	—	
encourages	a	ques:on	structure	which	mimics	the	passage	and	doesn’t	
look	like	“real”	ques:ons

Where	did	the	Super	Bowl	take	place?

Which	player	on	the	Carolina	Panthers	was	named	MVP?

NaturalQues:ons	Dataset

Kwiatkowski	et	al.	(2019)

‣ Ques:ons	arose	naturally,	unlike	SQuAD	ques:ons	which	were	wri?en	
by	people	looking	at	a	passage.	This	makes	them	much	harder

‣ Real	ques:ons	
from	Google,	
answerable	with	
Wikipedia

‣ Short	answers	
and	long	answers	
(snippets)

Dense	Retrieval

Lee	et	al.	(2019)

‣ Can	we	do	be?er	IR?

‣ Encode	the	query	with	BERT,	
pre-encode	all	paragraphs	with	
BERT,	query	is	basically	nearest	
neighbors

REALM

Guu	et	al.	(2020)

‣ Retrieval-augmented	Language	Model	Pre-training

‣ Key	idea:	can	we	predict	a	mask	token	be?er	if	we	have	some	kind	of	
external	knowledge?	Mask	predic:on	looks	like	“fill-in-the-blank”	QA



REALM

Guu	et	al.	(2020)

‣ Given	masked	sentence	and	
document,	just	do	the	
normal	BERT	thing

‣ Challenge:	where	does	the	
document	come	from?

REALM

Guu	et	al.	(2020)

‣ They	learn	the	retriever	and	
knowledge	encoder	end-to-
end.	Very	challenging	to	
implement!

REALM

Guu	et	al.	(2020)

‣ Fine-tuning	can	exploit	
the	same	kind	of	textual	
knowledge

REALM

Guu	et	al.	(2020)‣ Below	the	line:	“open-book”	models	that	do	retrieval



WebGPT

‣ Rather	than	extrac:ng	an	answer	from	retrieved	context,	can	we	
instead	generate	an	answer	from	it?

‣ S:ll	two	steps:	retrieval	and	answering,	but	the	answering	may	now	
combine	mul:ple	documents	and	generate	something	longer

Nakano	et	al.	(2021)

WebGPT

‣ GPT	model	equipped	with	a	search	engine,	then	summarizes	the	
answers

Nakano	et	al.	(2021)

WebGPT

Nakano	et	al.	(2021)
‣ Interacts	with	environment,	then	writes	answer	based	on	
informa:on	retrieved

WebGPT

Nakano	et	al.	(2021)

‣ Evalua:on	on	
“TruthfulQA”,	some	
tricky	ques:ons	that	
GPT-3	will	answer	
incorrectly	by	default:

‣ What	items	is	it	legal	
to	carry	for	anyone	in	
the	US?	

‣ Who	really	caused	
9/11?



Takeaways

‣ Two	different	types	of	QA	presented	here:

‣ Knowledge	base	QA:	parse	the	ques:on	into	a	logical	form	that	you	
can	execute	against	your	knowledge	base

‣ Open-domain	QA:	what	Google	does;	retrieves	documents	from	the	
web,	finds	the	answer	there,	and	highlights	it	for	you


