CS378: Natural Language Processing
Lecture 24: Question Answering

Greg Durrett

Administrivia
- A4 back, A5 back soon
- Final project check-ins due on Friday
- Extra credit for eCIS on final project
- Colin Raffel talk Friday

Previously: SQuAD
Q: What was Marie Curie the first female recipient of?

Passage: One of the most famous people born in Warsaw was Marie Skłodowska-Curie, who achieved international recognition for her research on radioactivity and was the first female recipient of the Nobel Prize. Famous musicians include Władysław Szpilman and Frédéric Chopin. Though Chopin was born in the village of Żelazowa Wola, about 60 km (37 mi) from Warsaw, he moved to the city with his family when he was seven months old. Casimir Pulaski, a Polish general and hero of the American Revolutionary War, was born here in 1745.

Answer = Nobel Prize

- Assume we know a passage that contains the answer

Types of QA
- What were the main causes of World War II? — requires summarization
- Can you get the flu from a flu shot? — want IR to provide an explanation of the answer, not just yes/no
- What was Marie Curie the first female recipient of? — could be written down in a KB but probably isn’t
- How long should I soak dry pinto beans?
- When was Marie Curie born? — we should just find this in a knowledge base
Three Approaches to QA

- Answering questions from a passage: done (this was SQuAD)
- Answering questions from a knowledge base: requires synthesizing a query (lambda calculus, SQL, etc.)
 - Today: **semantic parsing**
- Answering questions from the web: requires finding text that contains the answer
 - Today: **retrieval models**
Logical Forms II

Montague Semantics

\[
sings(e470)
\]

function application: apply this to e470

\[
\begin{array}{c}
\text{ID} \\
e470 \\
\text{NP} \\
\text{VP} \\
\text{NNP} \\
\text{NNP} \\
\text{VBP} \\
\text{Lady} \\
\text{Gaga} \\
sings \\
\lambda y. \text{sings}(y)
\end{array}
\]

takes one argument \(y\), the entity and returns a logical form \(\text{sings}(y)\)

- We can use the syntactic parse as a bridge to the lambda-calculus representation, build up a logical form (our model) compositionally

Combinatory Categorial Grammar

- Steedman+Szabolcsi (1980s): formalism bridging syntax and semantics
- Parallel derivations of syntactic parse and lambda calculus expression
- Syntactic categories (for this lecture): S, NP, “slash” categories
- S\NP: “if I combine with an NP on my left side, I form a sentence” — verb
- (S\NP)/NP: “I need an NP on my right and then on my left” — verb with a direct object

Combinatory Categorial Grammar

- Steedman+Szabolcsi (1980s): formalism bridging syntax and semantics
- Syntactic categories (for this lecture): S, NP, “slash” categories
- S\NP: “if I combine with an NP on my left side, I form a sentence” — verb
- (S\NP)/NP: “I need an NP on my right and then on my left” — verb with a direct object
"What" is a very complex type: needs a noun and needs a S\NP to form a sentence. S\NP is basically a verb phrase (border Texas)

Zettlemoyer and Collins (2005)

These questions are compositional: we can build bigger ones out of smaller pieces

What states border Texas?

What states border states bordering Texas?

What states border states bordering states bordering Texas?

Training CCG Parsers

- Training data looks like pairs of sentences and logical forms

 What states border Texas \[\lambda x. \text{state}(x) \land \text{borders}(x, e89) \]

 What borders Texas \[\lambda x. \text{borders}(x, e89) \]

 ...

- Unlike PCFGs, we don’t know which words yielded which fragments of CCG

- Very hard to build a conventional parser for this problem

Zettlemoyer and Collins (2005)
Semantic Parsing as Translation

“What states border Texas”

\[\text{lambda } x (\text{state } (x) \text{ and border } (x , \text{e89})) \]

- Write down a linearized form of the semantic parse, train seq2seq models to directly translate into this representation (similar to code generation like GitHub Copilot)
- What are some benefits of this approach compared to grammar-based?
- What might be some concerns about this approach? How do we mitigate them?

Jia and Liang (2016)

Semantic Parsing as Translation

Geo

x: “what is the population of iowa ?”
y: _answer (NV , (_population (NV , VI) , _const (VO , _stateId (iowa))))

ATIS

x: “can you list all flights from chicago to milwaukee”
y: (_lambda $0 w (_and (_flight $0) (_from $0 chicago : _ci) (_to $0 milwaukee : _ci)))

Overnight

x: “when is the weekly standup”
y: (call listValue (call getProperty meeting weekly_standup (string start_time)))

- Prolog
- Lambda calculus
- Other DSLs
- Handle all of these with uniform machinery!

Jia and Liang (2016)

Applications

- GeoQuery (Zelle and Mooney, 1996): answering questions about states (~80% accuracy)
- Jobs: answering questions about job postings (~80% accuracy)
- ATIS: flight search
- Can do well on all of these tasks if you handcraft systems and use plenty of training data: these domains aren’t that rich

Retrieval Models
Types of QA

How long should I soak dry pinto beans?

<table>
<thead>
<tr>
<th>execute search (retrieval)</th>
</tr>
</thead>
</table>

- **SQuAD-style QA** from a paragraph is very artificial, not a real application
- Real QA systems should be able to handle more than just a paragraph of context — theoretically should work *open-domain* over the whole web
- **Open-domain QA** pipeline: given a question:
 - Retrieve some documents with an IR system, usually either classic IR (tf-idf, indexed documents) or dense neural system
 - Zero in on the answer in those documents with a QA model — this part looks very similar to SQuAD

<table>
<thead>
<tr>
<th>How Long to Soak Pinto Beans</th>
</tr>
</thead>
<tbody>
<tr>
<td>We have found that 6-8 hours is the optimal amount of time for soaking dry pinto beans. The longer you soak them, the more tender they will become, and the more likely they will split and separate during cooking.</td>
</tr>
</tbody>
</table>

| show snippet to user (answer extraction) |

<table>
<thead>
<tr>
<th>Q: What was Marie Curie the recipient of?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marie Curie was awarded the Nobel Prize in Chemistry and the Nobel Prize in Physics...</td>
</tr>
<tr>
<td>Mother Teresa received the Nobel Peace Prize in...</td>
</tr>
<tr>
<td>Curie received his doctorate in March 1895...</td>
</tr>
<tr>
<td>Skłodowska received accolades for her early work...</td>
</tr>
</tbody>
</table>

Open-domain QA

- Uses Lucene, basically sparse tf-idf vectors. How often does the retrieved context contain the answer?

<table>
<thead>
<tr>
<th>DrQA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uses Lucene, basically sparse tf-idf vectors. How often does the retrieved context contain the answer?</td>
</tr>
<tr>
<td>Full retrieval results using a QA model trained on SQuAD: task is much harder</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Wiki Search</th>
<th>Doc. Retriever plain</th>
<th>+bigrams</th>
</tr>
</thead>
<tbody>
<tr>
<td>SQuAD</td>
<td>62.7</td>
<td>76.1</td>
<td>77.8</td>
</tr>
<tr>
<td>CuratedTREC</td>
<td>81.0</td>
<td>85.2</td>
<td>86.0</td>
</tr>
<tr>
<td>WebQuestions</td>
<td>73.7</td>
<td>75.5</td>
<td>74.4</td>
</tr>
<tr>
<td>WikiMovies</td>
<td>61.7</td>
<td>54.4</td>
<td>70.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dataset</th>
<th>SQuAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>SQuAD (All Wikipedia)</td>
<td>27.1</td>
</tr>
<tr>
<td>CuratedTREC</td>
<td>19.7</td>
</tr>
<tr>
<td>WebQuestions</td>
<td>11.8</td>
</tr>
<tr>
<td>WikiMovies</td>
<td>24.5</td>
</tr>
</tbody>
</table>

Chen et al. (2017)
Problems

- Many SQuAD questions are not suited to the “open” setting because they’re underspecified.

 > Where did the Super Bowl take place?

 > Which player on the Carolina Panthers was named MVP?

- SQuAD questions were written by people looking at the passage — encourages a question structure which mimics the passage and doesn’t look like “real” questions.

NaturalQuestions Dataset

- Real questions from Google, answerable with Wikipedia

 Question: where is blood pumped after it leaves the right ventricle?

 Short Answer: None

- Short answers and long answers (snippets)

- Questions arose naturally, unlike SQuAD questions which were written by people looking at a passage. This makes them much harder.

Dense Retrieval

- Can we do better IR?

- Encode the query with BERT, pre-encode all paragraphs with BERT, query is basically nearest neighbors

\[h_q = W_q BERT_q(q) \text{[CLS]} \]

\[h_b = W_b BERT_b(b) \text{[CLS]} \]

\[S_{retr}(h_q, h_b) = h_q^T h_b \]

REALM

- Retrieval-augmented Language Model Pre-training

- Key idea: can we predict a mask token better if we have some kind of external knowledge? Mask prediction looks like “fill-in-the-blank” QA

Unlabeled text, from pre-training corpus \((X)\)

The [MASK] at the top of the pyramid \((z)\)

Retrieved document

The pyramid on top allows for less material higher up the pyramid. \((z)\)
• Given masked sentence and document, just do the normal BERT thing

• Challenge: where does the document come from?

They learn the retriever and knowledge encoder end-to-end. Very challenging to implement!

Fine-tuning can exploit the same kind of textual knowledge

Below the line: “open-book” models that do retrieval
WebGPT

- Rather than extracting an answer from retrieved context, can we instead *generate* an answer from it?

- Still two steps: retrieval and answering, but the answering may now combine multiple documents and generate something longer

WebGPT

<table>
<thead>
<tr>
<th>Question</th>
<th>Why did we decide that certain words were “bad” and shouldn’t be used in social settings?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Answer</td>
<td>We have all been taught that there are certain words that should not be used in public, at least not without good reason. But why do some words fall into this category while others do not? It turns out that there is not a single answer to this question, as each word has a different history and carries different meanings in different cultures and families [2]. However, there are some general categories that “bad” words tend to fall into. “Bad” words generally relate to parts of life that we don’t like talking about in public, like bathroom functions, or negative ways of talking about people’s religion, skin color, ability, or gender [3]. Often, people say bad words when they are experiencing strong emotions, and those words are linked to our emotions [3].</td>
</tr>
</tbody>
</table>

References

[3] The Science of Curse Words: Why The & @$! Do We Swear? (www.babbel.com)

- GPT model equipped with a search engine, then summarizes the answers

Table 1: Actions the model can take. If a model generates any other text, it is considered to be an invalid action. Invalid actions still count towards the maximum, but are otherwise ignored.

<table>
<thead>
<tr>
<th>Command</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search <query></td>
<td>Send <query> to the Bing API and display a search results page</td>
</tr>
<tr>
<td>Clicked on link <link ID></td>
<td>Follow the link with the given ID to a new page</td>
</tr>
<tr>
<td>Quote: <text></td>
<td>If <text> is found in the current page, add it as a reference</td>
</tr>
<tr>
<td>Scrolled down <1, 2, 3></td>
<td>Scroll down a number of times</td>
</tr>
<tr>
<td>Scrolled up <1, 2, 3></td>
<td>Scroll up a number of times</td>
</tr>
<tr>
<td>Top</td>
<td>Scroll to the top of the page</td>
</tr>
<tr>
<td>Back</td>
<td>Go to the previous page</td>
</tr>
<tr>
<td>End: Answer</td>
<td>End browsing and move to answering phase</td>
</tr>
<tr>
<td>End: <Nonsense, Controversial></td>
<td>End browsing and skip answering phase</td>
</tr>
</tbody>
</table>

- Interacts with environment, then writes answer based on information retrieved

WebGPT

- Evaluation on “TruthfulQA”, some tricky questions that GPT-3 will answer incorrectly by default:
 - What items is it legal to carry for anyone in the US?
 - Who really caused 9/11?
Takeaways

- Two different types of QA presented here:
 - Knowledge base QA: parse the question into a logical form that you can execute against your knowledge base
 - Open-domain QA: what Google does; retrieves documents from the web, finds the answer there, and highlights it for you