CS388: Natural Language Processing

Lecture 26:
Multilingual,
Multimodal Models

Greg Durrett

Announcements

- FP due December 9
- Next lecture ethics and the last written response
- eCIS evaluations: fill these out for extra credit!

Multilinguality

NLP in other languages

- Other languages present some challenges not seen in English at all!
- Some of our algorithms have been specified to English
 - Some structures like constituency parsing don't make sense for other languages
 - Neural methods are typically tuned to English-scale resources, may not be the best for other languages where less data is available
- This lecture: How can we leverage existing resources to do better in other languages without just annotating massive data?

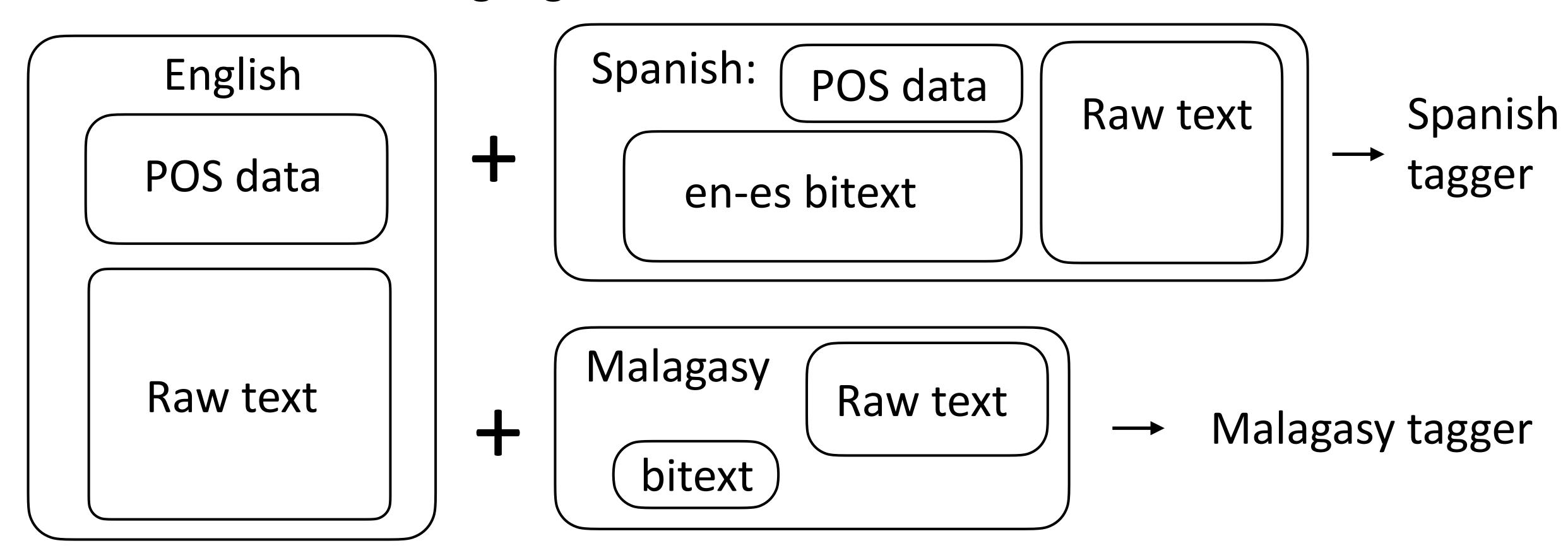
This Lecture

- Cross-lingual tagging and parsing
- Multilingual pre-training

Cross-Lingual Tagging and Parsing

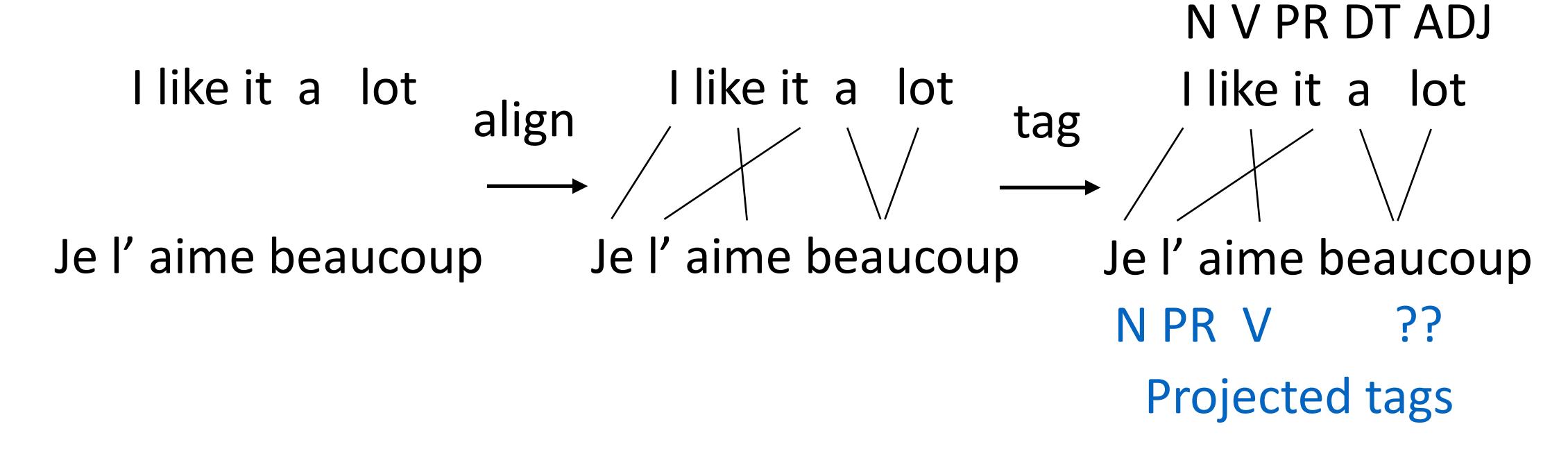
Cross-Lingual Tagging

- Labeling POS datasets is expensive
- Can we transfer annotation from high-resource languages (English, etc.) to low-resource languages?



Cross-Lingual Tagging

Can we leverage word alignment here?



Tag with English tagger, project across bitext, train French tagger?
Works pretty well

Das and Petrov (2011)

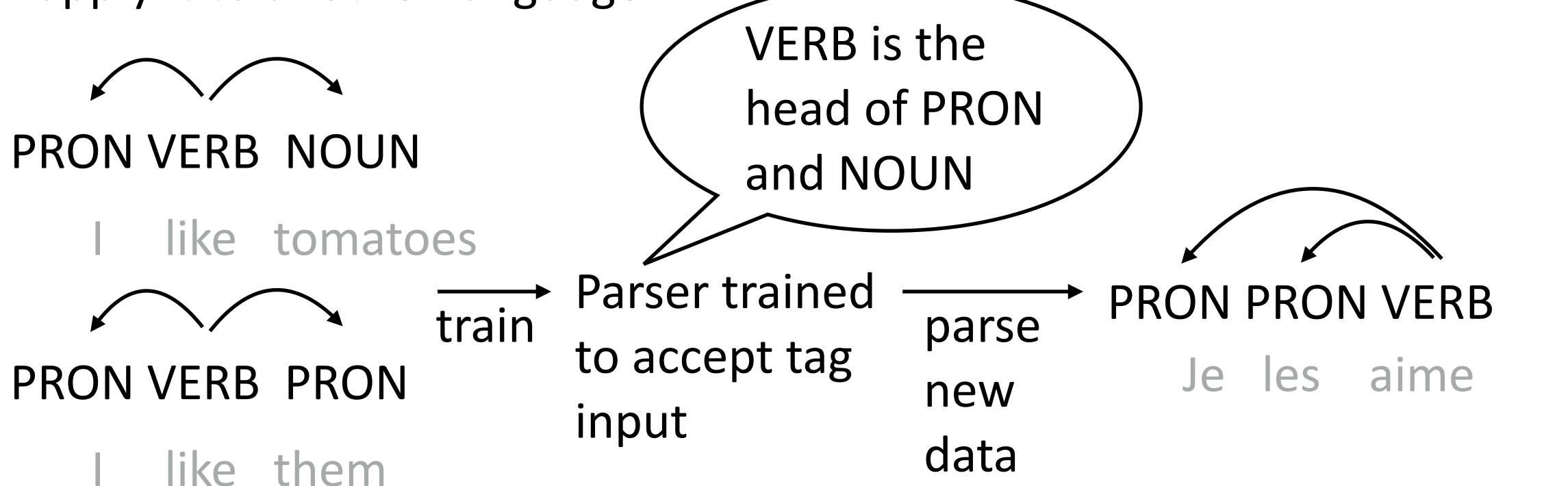
Cross-Lingual Parsing

Now that we can POS tag other languages, can we parse them too?

Direct transfer: train a parser over POS sequences in one language, then

apply it to another language

VERR is the



McDonald et al. (2011)

Cross-Lingual Parsing

	best-source		avg-source	gold-POS		
	source	gold-POS	gold-POS	multi-dir.	multi-proj.	
da	it	48.6	46.3	48.9	49.5	
de	nl	55.8	48.9	56.7	56.6	
el	en	63.9	51.7	60.1	65.1	
es	it	68.4	53.2	64.2	64.5	
it	pt	69.1	58.5	64.1	65.0	
nl	el	62.1	49.9	55.8	65.7	
pt	it	74.8	61.6	74.0	75.6	
sv	pt	66.8	54.8	65.3	68.0	
avg		63.7	51.6	61.1	63.8	

- Multi-dir: transfer a parser trained on a few source treebanks to the target language
- Multi-proj: more complex annotation projection approach McDonald et al. (2011)

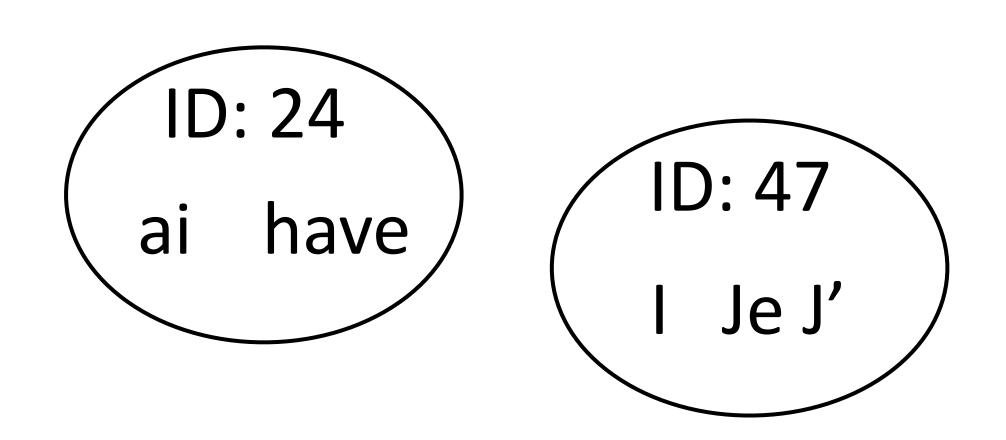
Cross-Lingual, Multilingual Word Representations

Multilingual Embeddings

Input: corpora in many languages. Output: embeddings where similar words in different languages have similar embeddings

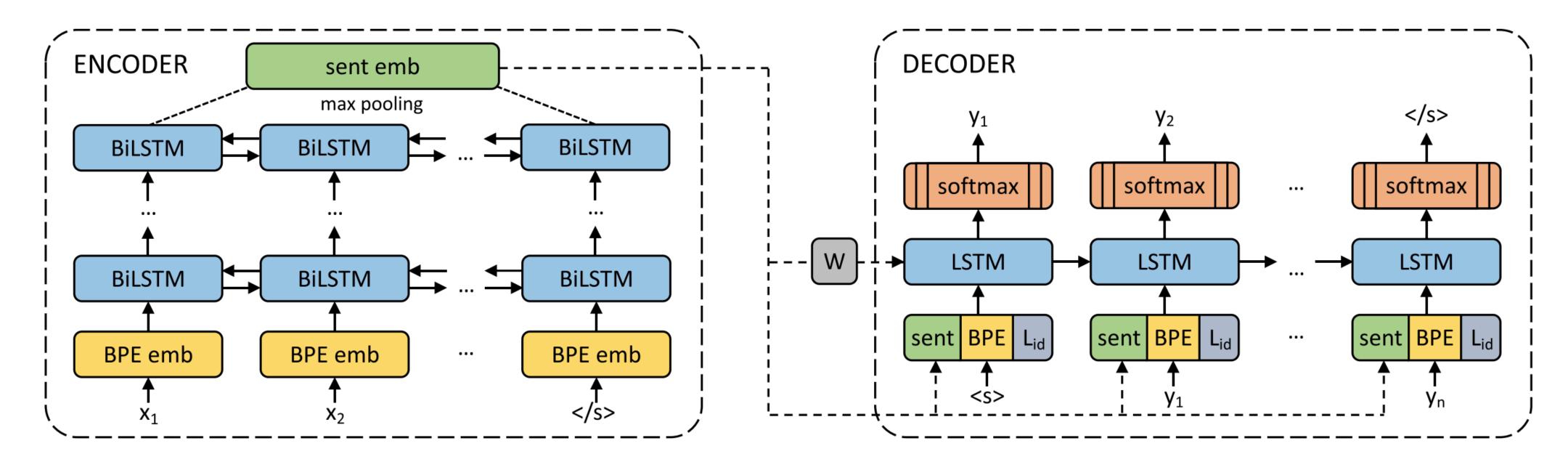
I have an apple 47 24 18 427

J' ai des oranges 47 24 89 1981



- multiCluster: use bilingual dictionaries to form clusters of words that are translations of one another, replace corpora with cluster IDs, train "monolingual" embeddings over all these corpora
- Works okay but not all that well

Multilingual Sentence Embeddings



- Form BPE vocabulary over all corpora (50k merges); will include characters from every script
- Take a bunch of bitexts and train an MT model between a bunch of language pairs with shared parameters, use W as sentence embeddings
 Artetxe et al. (2019)

Multilingual Sentence Embeddings

		EN	fr	es	de	el	bg	ru
Zero-Shot Transfer,	ges:							
Conneau et al.	X-BiLSTM	73.7	67.7	68.7	67.7	68.9	67.9	65.4
(2018b)	X-CBOW	64.5	60.3	60.7	61.0	60.5	60.4	57.8
BERT uncased*	Transformer	<u>81.4</u>	_	<u>74.3</u>	70.5	_	_	_
Proposed method	BiLSTM	73.9	71.9	72.9	<u>72.6</u>	72.8	74.2	72.1

Train a system for NLI (entailment/neutral/contradiction of a sentence pair) on English and evaluate on other languages

Artetxe et al. (2019)

Multilingual BERT

- Take top 104 Wikipedias, train BERT on all of them simultaneously
- What does this look like?

Beethoven may have proposed unsuccessfully to Therese Malfatti, the supposed dedicatee of "Für Elise"; his status as a commoner may again have interfered with those plans.

当人们在马尔法蒂身后发现这部小曲的手稿时,便误认为上面写的是 "Für Elise"(即《给爱丽丝》)[51]。

Китáй (официально — Китáйская Нарóдная Респýблика, сокращённо — КНР; кит. трад. 中華人民共和國, упр. 中华人民共和

国, пиньинь: Zhōnghuá Rénmín Gònghéguó, палл.: Чжунхуа Жэньминь Гунхэго) — государство в Восточной Аз

Devlin et al. (2019)

Multilingual BERT: Results

Fine-tuning \ Eval	EN	DE	ES	IT
EN	96.82	89.40	85.91	91.60
DE	83.99	93.99	86.32	88.39
ES	81.64	88.87	96.71	93.71
IT	86.79	87.82	91.28	98.11

Table 2: Pos accuracy on a subset of UD languages.

- Can transfer BERT directly across languages with some success
- but this evaluation is on languages that all share an alphabet Pires

Multilingual BERT: Results

	HI	UR		EN	$\mathbf{B}\mathbf{G}$	JA
HI	97.1	85.9	EN	96.8	87.1	49.4
UR	91.1	93.8	$\mathbf{B}\mathbf{G}$	82.2	98.9	51.6
			JA	57.4	67.2	96.5

Table 4: POS accuracy on the UD test set for languages with different scripts. Row=fine-tuning, column=eval.

- Urdu (Arabic/Nastaliq script) => Hindi (Devanagari). Transfers well despite different alphabets!
- Japanese => English: different script and very different syntax

Scaling Up: XLM-R

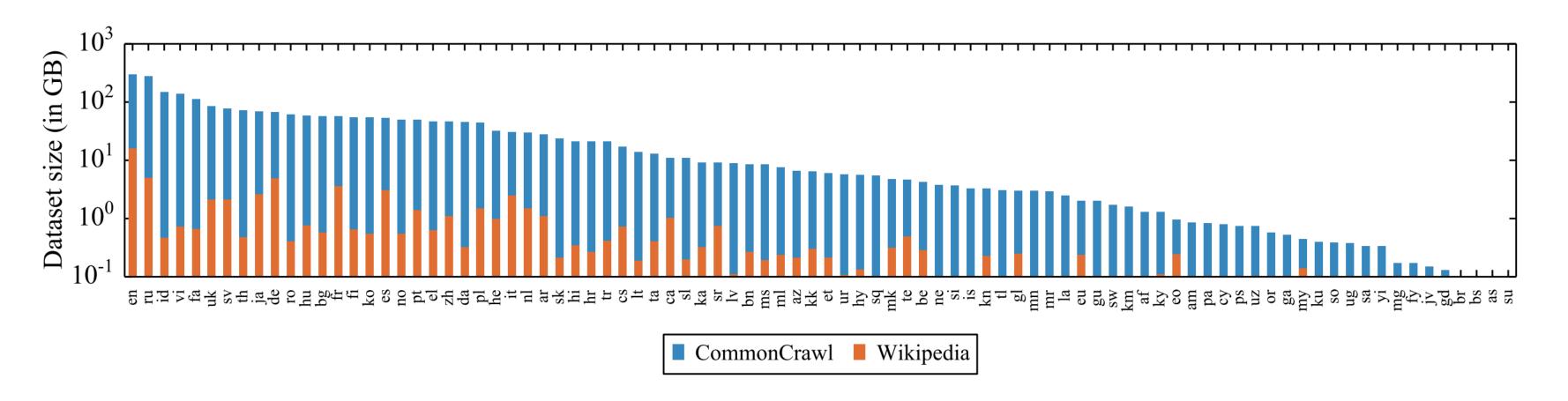
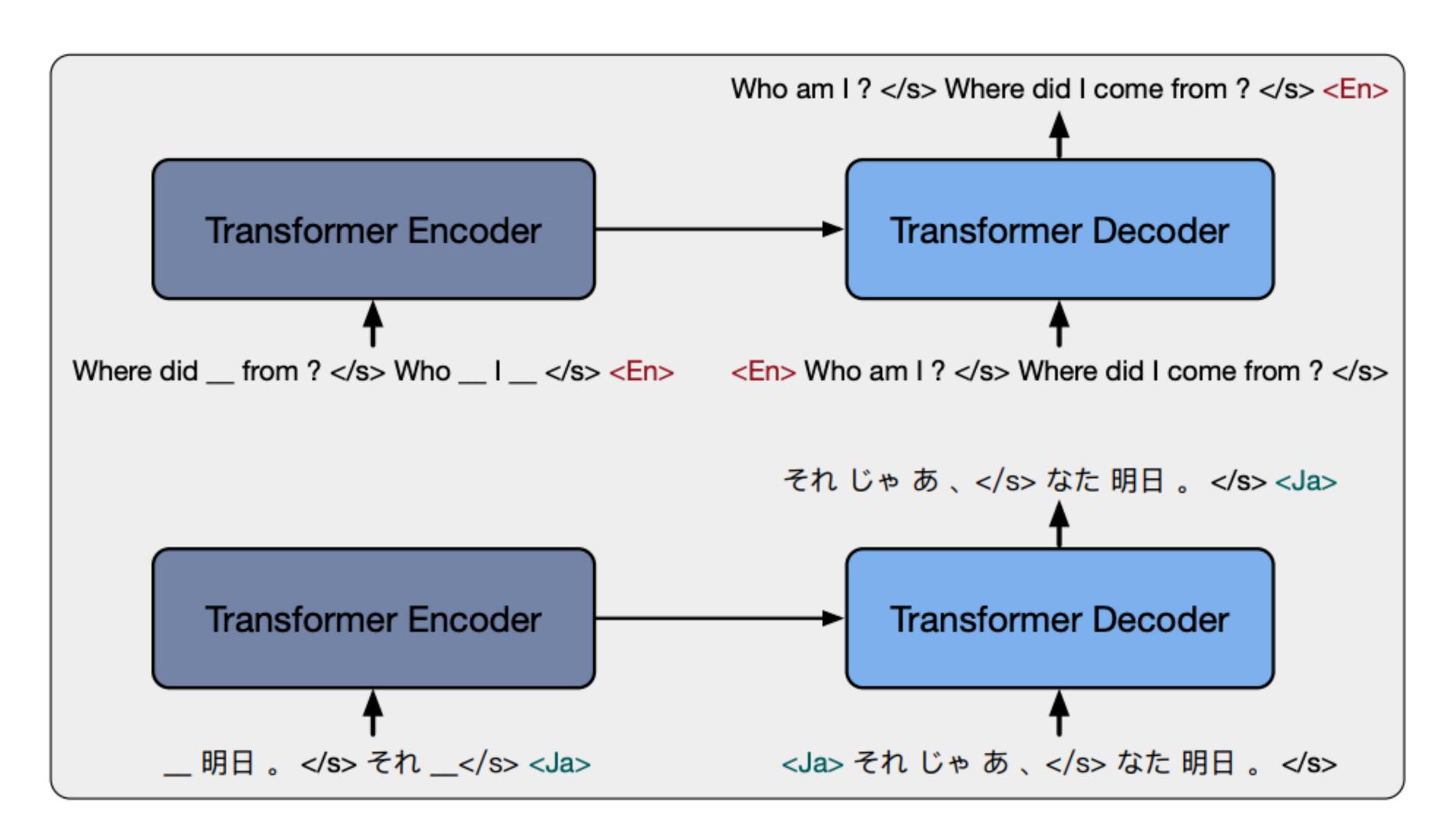


Figure 1: Amount of data in GiB (log-scale) for the 88 languages that appear in both the Wiki-100 corpus used for mBERT and XLM-100, and the CC-100 used for XLM-R. CC-100 increases the amount of data by several orders of magnitude, in particular for low-resource languages.

- Larger "Common Crawl" dataset, better performance than mBERT
- Low-resource languages benefit from training on other languages
- High-resource languages see a small performance hit, but not much

Conneau et al. (2019)

Scaling Up: mBART



Multilingual Denoising Pre-Training (mBART)

Liu et al. (2020)

Scaling Up: Benchmarks

Task	Corpus	Train	Dev	Test	Test sets	Lang.	Task
Classification	XNLI PAWS-X	392,702 49,401	2,490 2,000	5,010 2,000	translations translations	15 7	NLI Paraphrase
Struct. pred.	POS	21,253	3,974	47-20,436	ind. annot.	33 (90)	POS
	NER XQuAD	20,000	10,000	1,000-10,000	ind. annot. translations	40 (176)	NER Span extraction
QA	MLQA TyDiQA-GoldP	87,599 3,696	34,726 634	4,517–11,590 323–2,719	translations ind. annot.	7	Span extraction Span extraction
Retrieval	BUCC Tatoeba	- -	-	1,896–14,330 1,000	-	5 33 (122)	Sent. retrieval Sent. retrieval

- Many of these datasets are translations of base datasets, not originally annotated in those languages
- Exceptions: POS, NER, TyDiQA

TyDiQA

- Typologicallydiverse QA dataset
- Annotators write questions based on very short snippets of articles; answers may or may not exist, fetched from elsewhere in Wikipedia

```
Q: Как далеко Уран от how far Uranus-SG.Nom from
```

Земл-и?

Earth-SG.GEN?

How far is Uranus from Earth?

A: Расстояние между Уран-ом distance between Uranus-SG.Instr

и Земл-ёй меняется от 2,6

and Earth-SG.Instr varies from 2,6

до 3,15 млрд км...

to 3,15 bln km...

The distance between Uranus and Earth fluctuates from 2.6 to 3.15 bln km... Clark et al. (2021)

Cross-Lingual Typing

- Train an mBERT-based typing model on Wikipedia data in English, Spanish, German and Finnish
- Achieves solid performance even on totally new languages like Japanese that don't share a character set with these

Sequence: 菊池は アメリカ大リーグ への参戦も 視野に進路が注目されていたが、10月25日に日本のプロ野球に挑戦することを表明していた。...

Translation: Kikuchi was considering <u>Major League</u> <u>Baseball</u> as his next career, but he announced that he would play professional baseball in Japan ...

Predictions: baseball, established, establishments, in the united states, organizations, sports

Gold Types: baseball, baseball leagues in the united states, bodies, established, establishments, events, in canada, in the united states, major league baseball, multi-national professional sports leagues, organizations, professional, sporting, sports...

Precision: 100% Recall: 31.6%

Where are we now?

- Universal dependencies: treebanks (+ tags) for 70+ languages
- Datasets in other languages are still small, so projection techniques may still help
- More corpora in other languages, less and less reliance on structured tools like parsers, and pretraining on unlabeled data means that performance on other languages is better than ever
- Multilingual models seem to be working better and better can even transfer to new languages "zero-shot". But still many challenges for lowresource settings

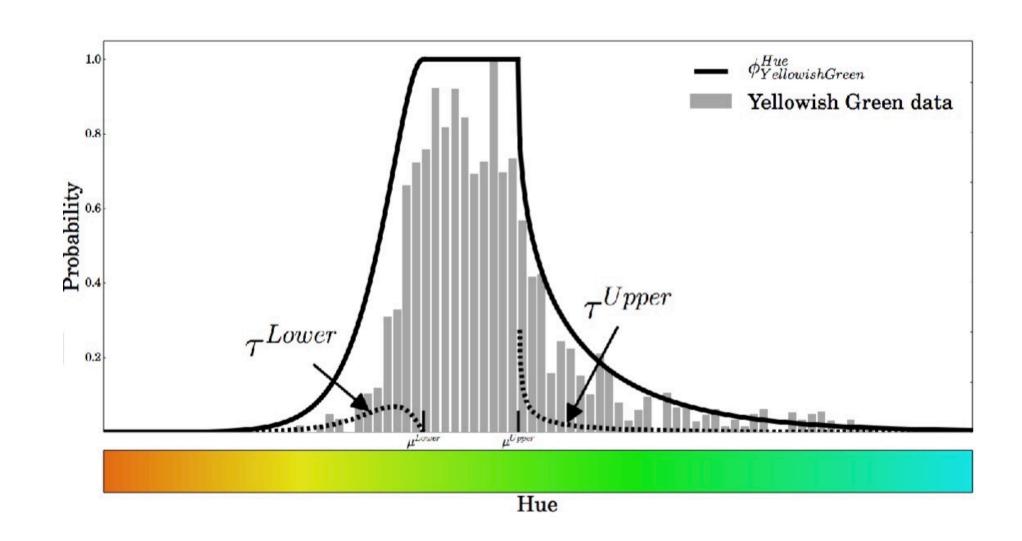
Multimodality, Language Grounding

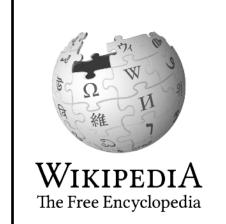
Language Grounding

- We've seen that we can learn representations that transfer across multiple languages
- What about different modalities of data?
- Can we view an (image, text) pair as two "languages" and train something like what we had for multilingual data?
- Ultimate goal: learn models that ground language in something other than symbols

Language Grounding

How to associate words with sensory-motor experiences How to associate words with meaning representation

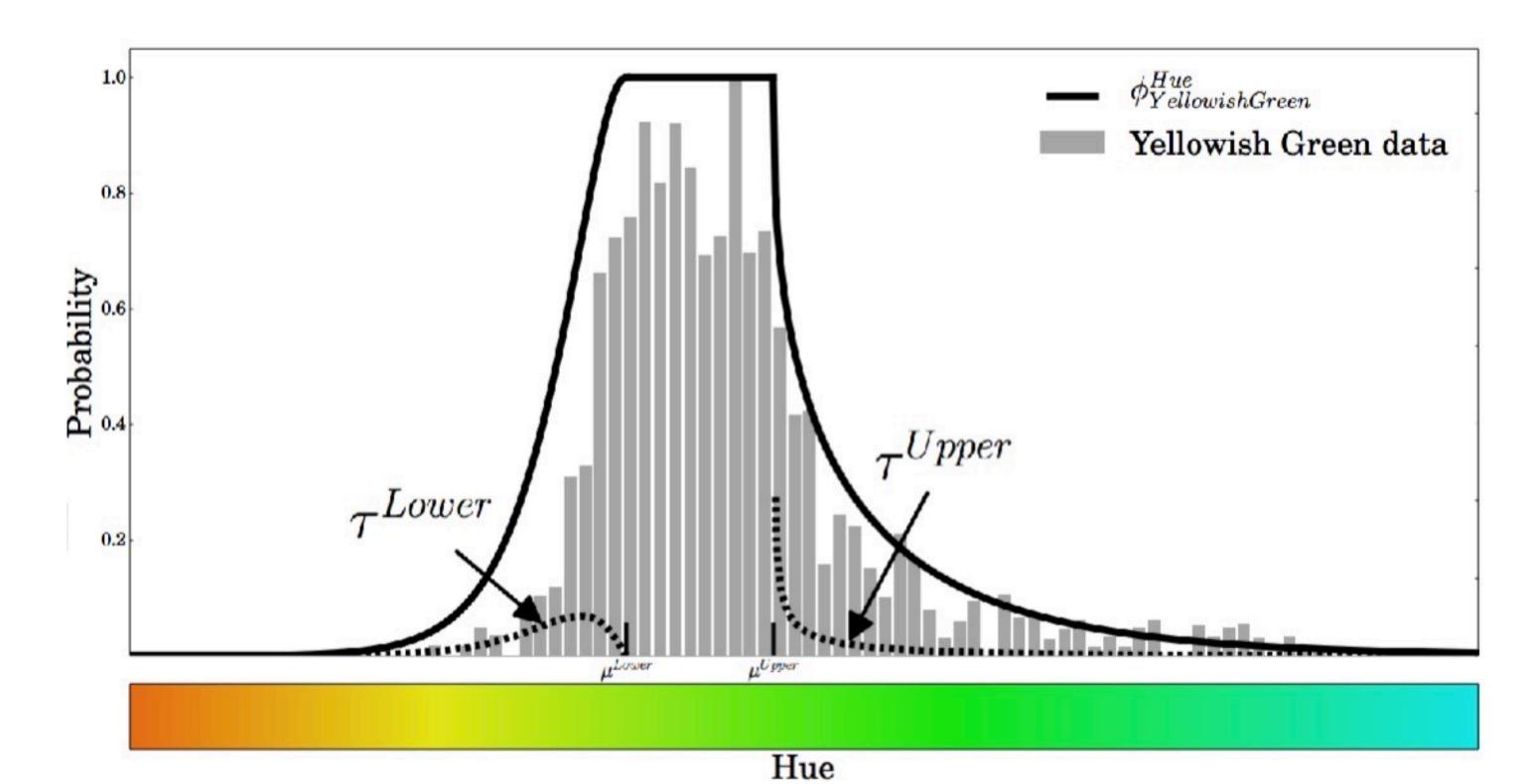




Alan Turing was a British mathematician, logician, cryptanalyst, and computer scientist.

Language Grounding

- What does "yellowish green" mean?
- Formal semantics: yellowish green is a predicate. Things are either yellowish green or not. No connection to real color
- Grounding in perceptual space:



Perception

- ► Visual: *green* = [0,1,0] in RGB
- Auditory: loud = >120 dB
- ► Taste: sweet = >some threshold level of sensation on taste buds
- High-level concepts:

cat dog

running

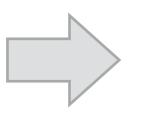
eating

29

Learning from Interaction

1. Use feedback from control application to understand language

Walk across the bridge



Reward +1

Alleviate dependence on large scale annotation

2. Use language to improve performance in control applications

Ghosts chase and try to kill you
 Collect all the pellets

Score: 7 Score: 107

Other Grounding

Temporal concepts

- late evening = after 6pm
- fast, slow = describing rates of change
- Relations
 - Spatial:
 - left, on top of, in front of

Functional:

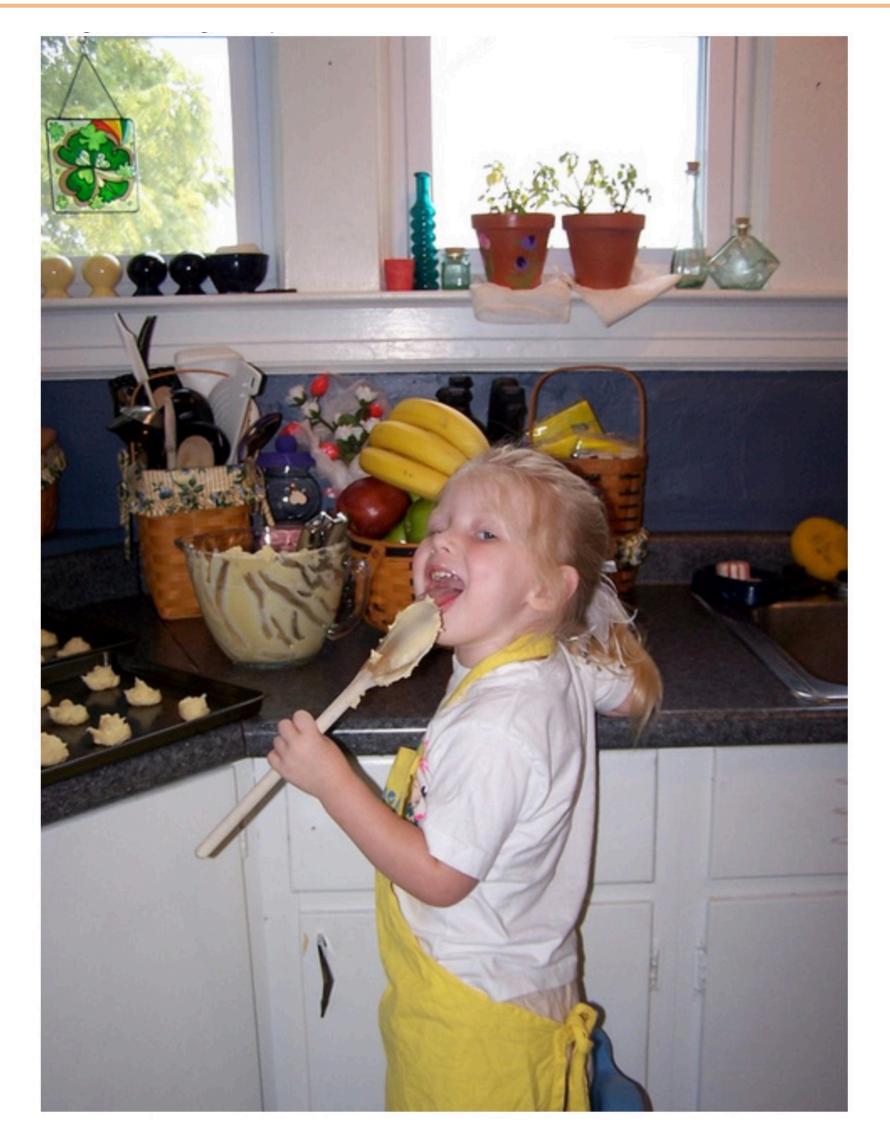
- Jacket: keeps people warm
- Mug: holds water
- Size:
 - Whales are larger than lions

Focus today: grounding in images

Grounding in Images

How would you describe this image?

What does the word "spoon" evoke?

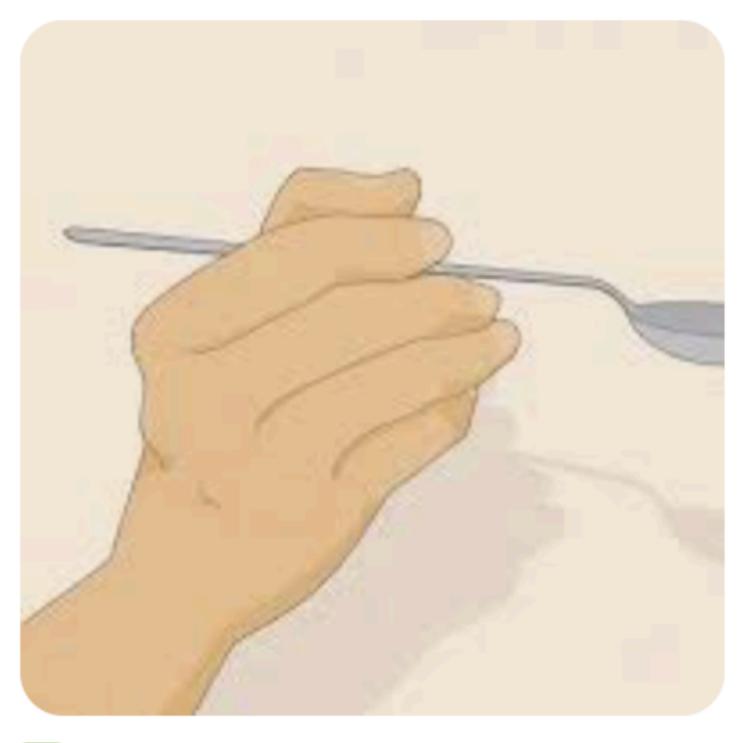


the girl is licking the spoon of batter

Grounding Spoon

Winco 0005-03 7 3/8" Dinner Spoon...

\$7.16



wikiHow

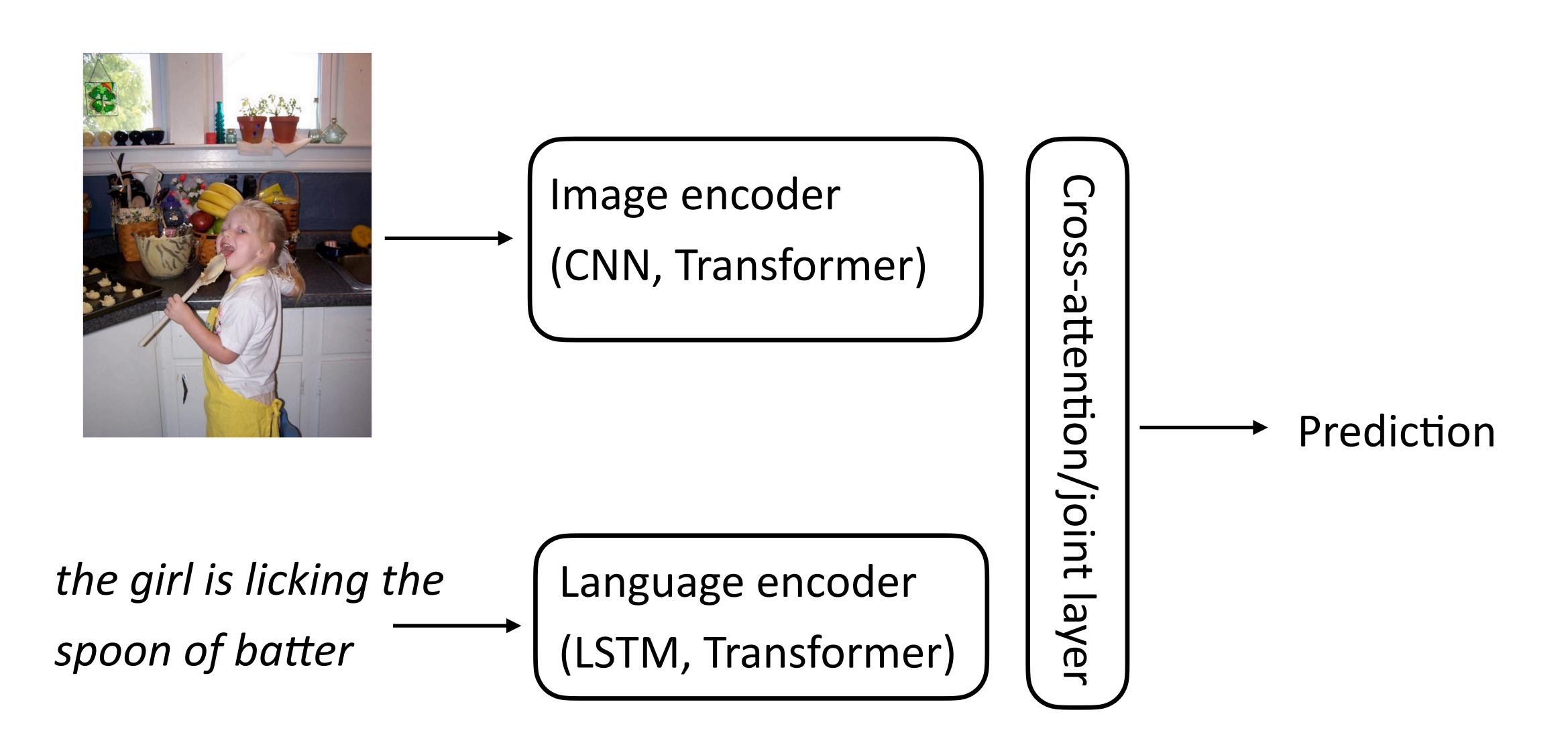
How to Hold a Spoon: 13 Steps (...

o Indiegogo
Spoon that Elevates Taste ...

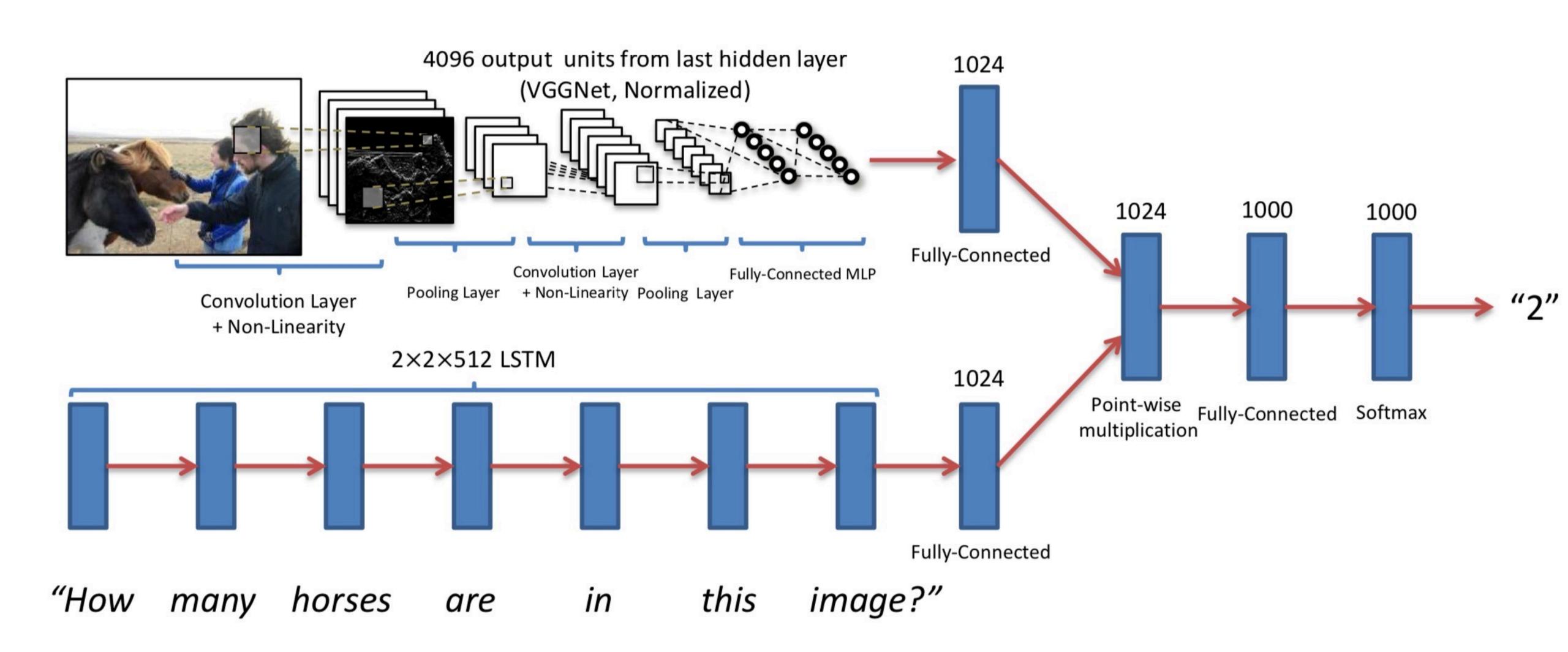
Grounding Language in Images

- More broadly,
 - Nouns: objects
 - Verbs: actions
 - Sentences: whole scenes or things happening
- Tasks:
 - Object recognition (pick out one most salient object or detect all of them)
 - Image captioning: produce a whole sentence for an image

Language-vision Models

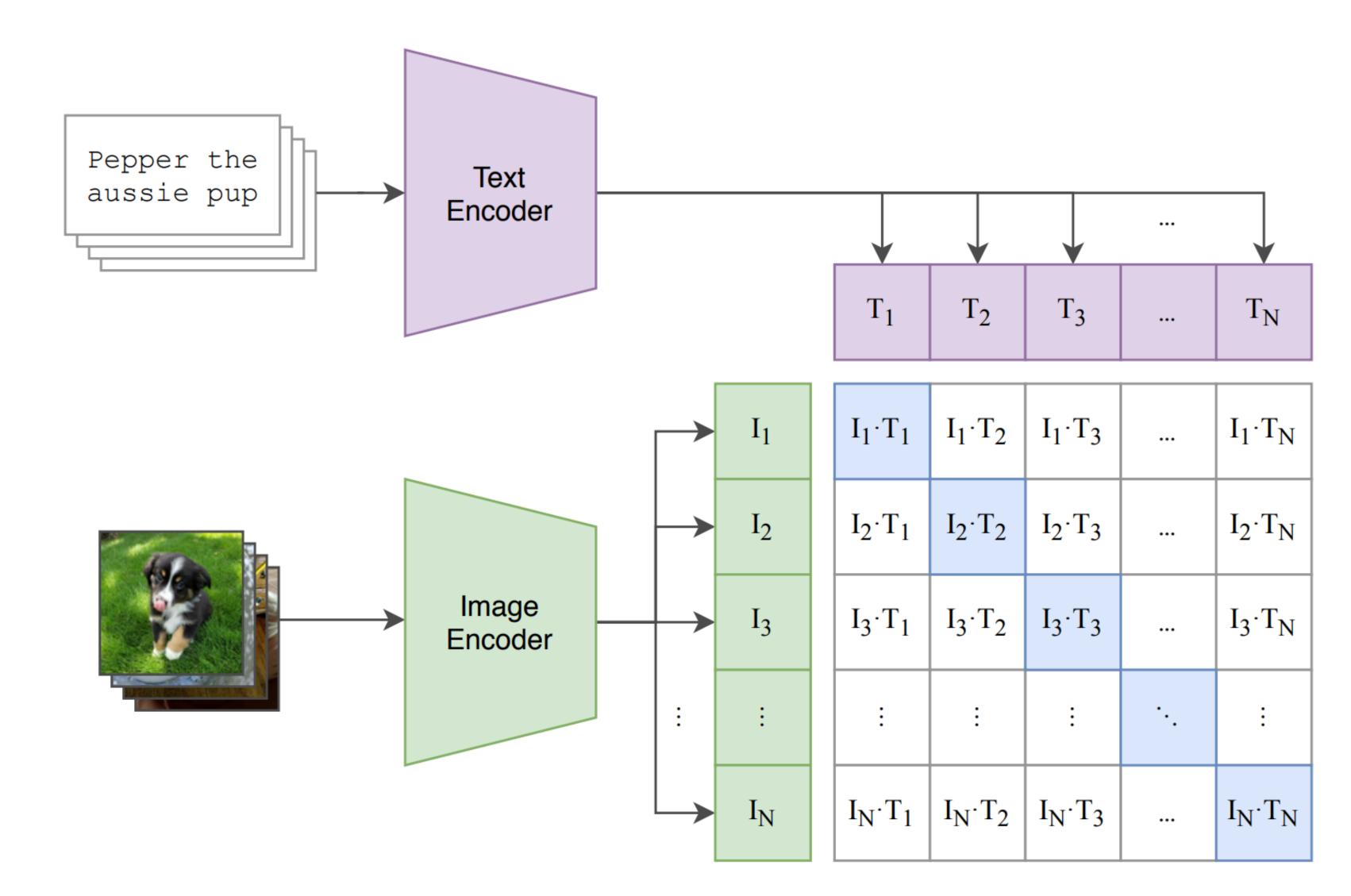


Visual Question Answering



Language-vision Pre-training

(1) Contrastive pre-training



Language-vision Pre-training

	T_1	T ₂	T ₃	•••	T _N
I ₁	$I_1 \cdot T_1$	$I_1 \cdot T_2$	I ₁ ·T ₃	•••	$I_1 \cdot T_N$
I_2	$I_2 \cdot T_1$	$I_2 \cdot T_2$	I ₂ ·T ₃		$I_2 \cdot T_N$
I ₃	$I_3 \cdot T_1$	$I_3 \cdot T_2$	I ₃ ·T ₃		$I_3 \cdot T_N$
:	:	:	:	٠.	:
I_N	$I_N \cdot T_1$	$I_N \cdot T_2$	I _N ·T ₃		$I_N \cdot T_N$

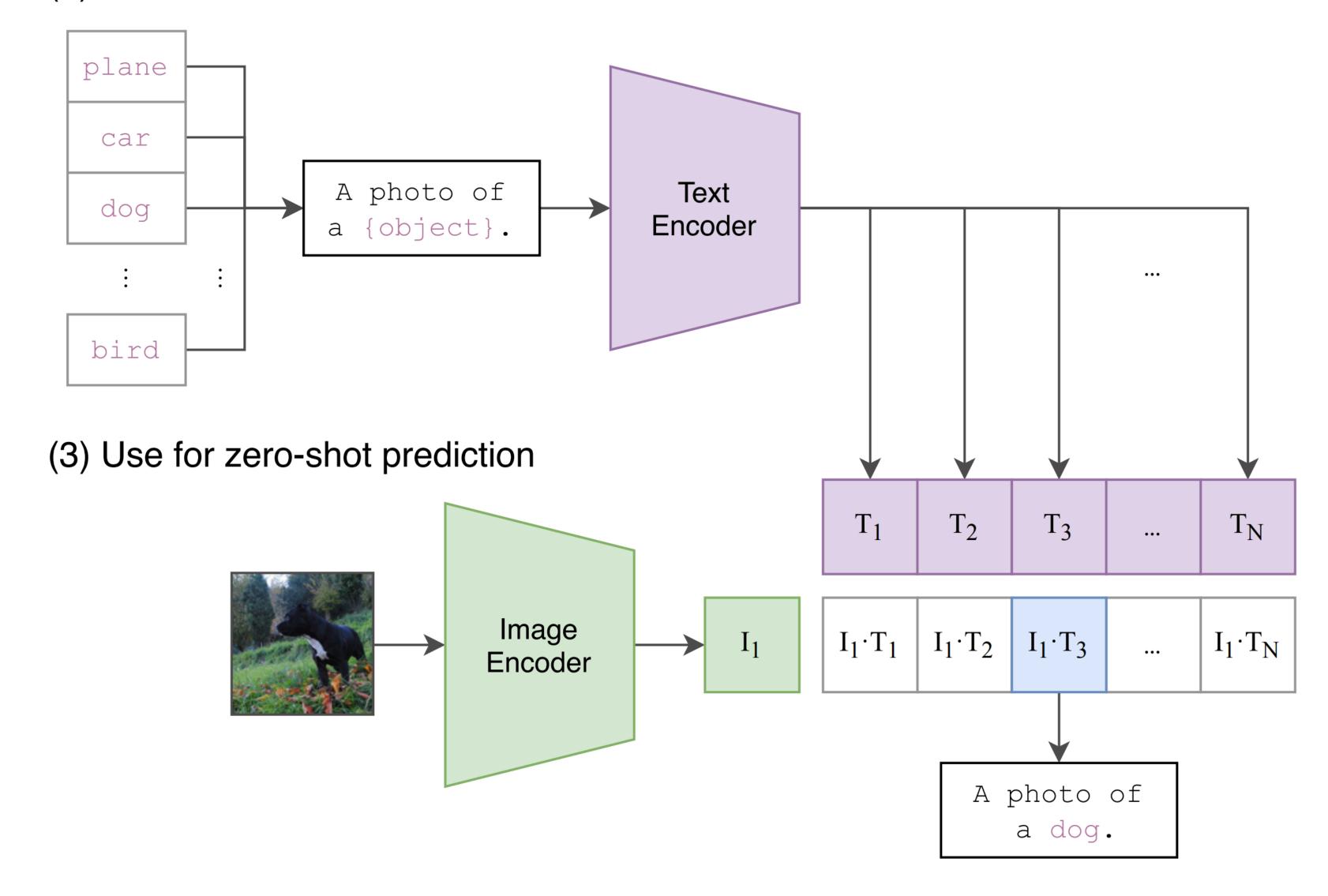
Contrastive objective: each image should be more similar to its correspond caption than to other captions

```
\begin{aligned} \text{maximize softmax}(I_1^T T_i)[1] \\ + \text{softmax}(I_2^T T_i)[2] \\ + \ldots \end{aligned}
```

Radford et al., 2021

Language-vision Pre-training

(2) Create dataset classifier from label text

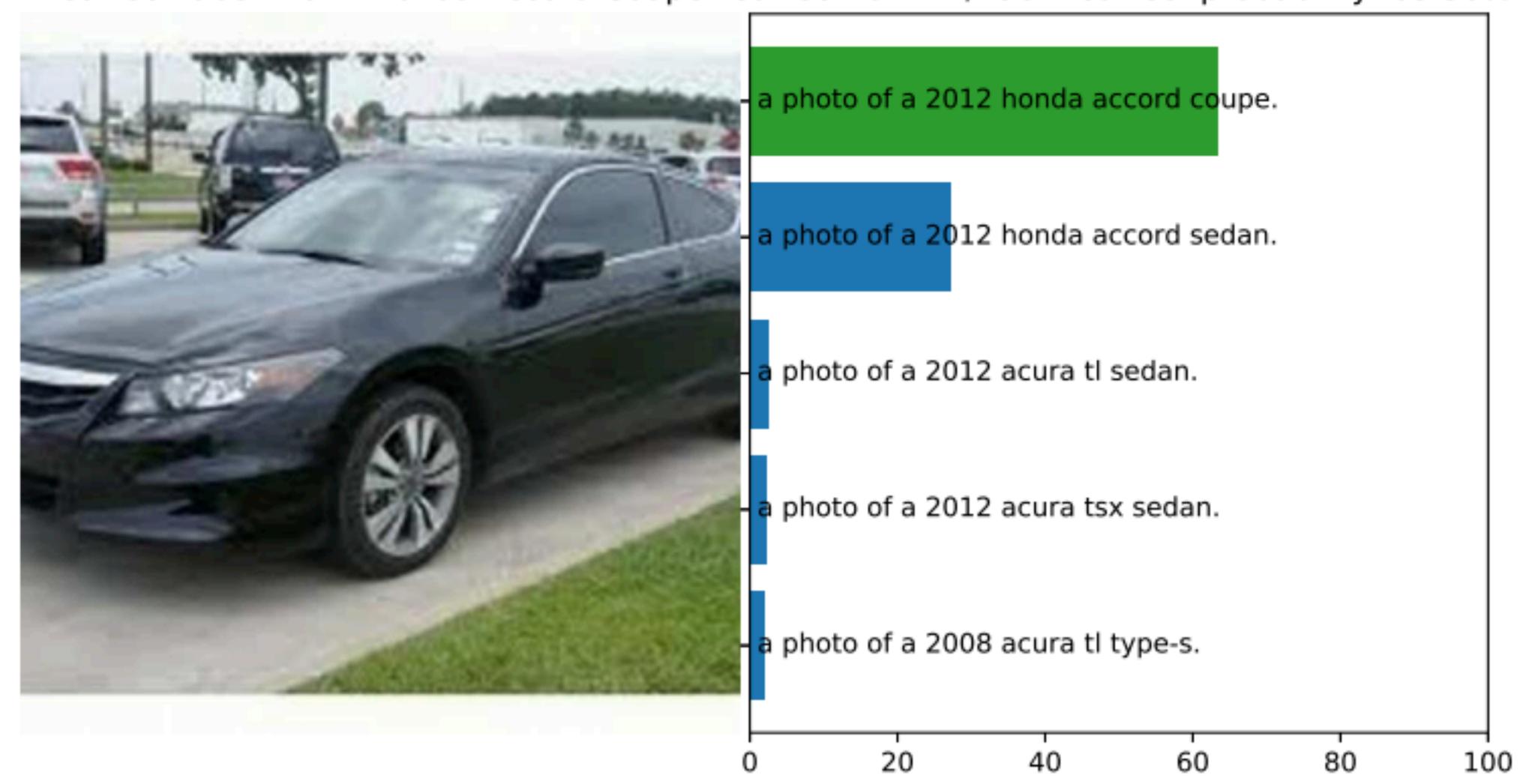


Radford et al., 2021

CLIP: Zero-shot Results

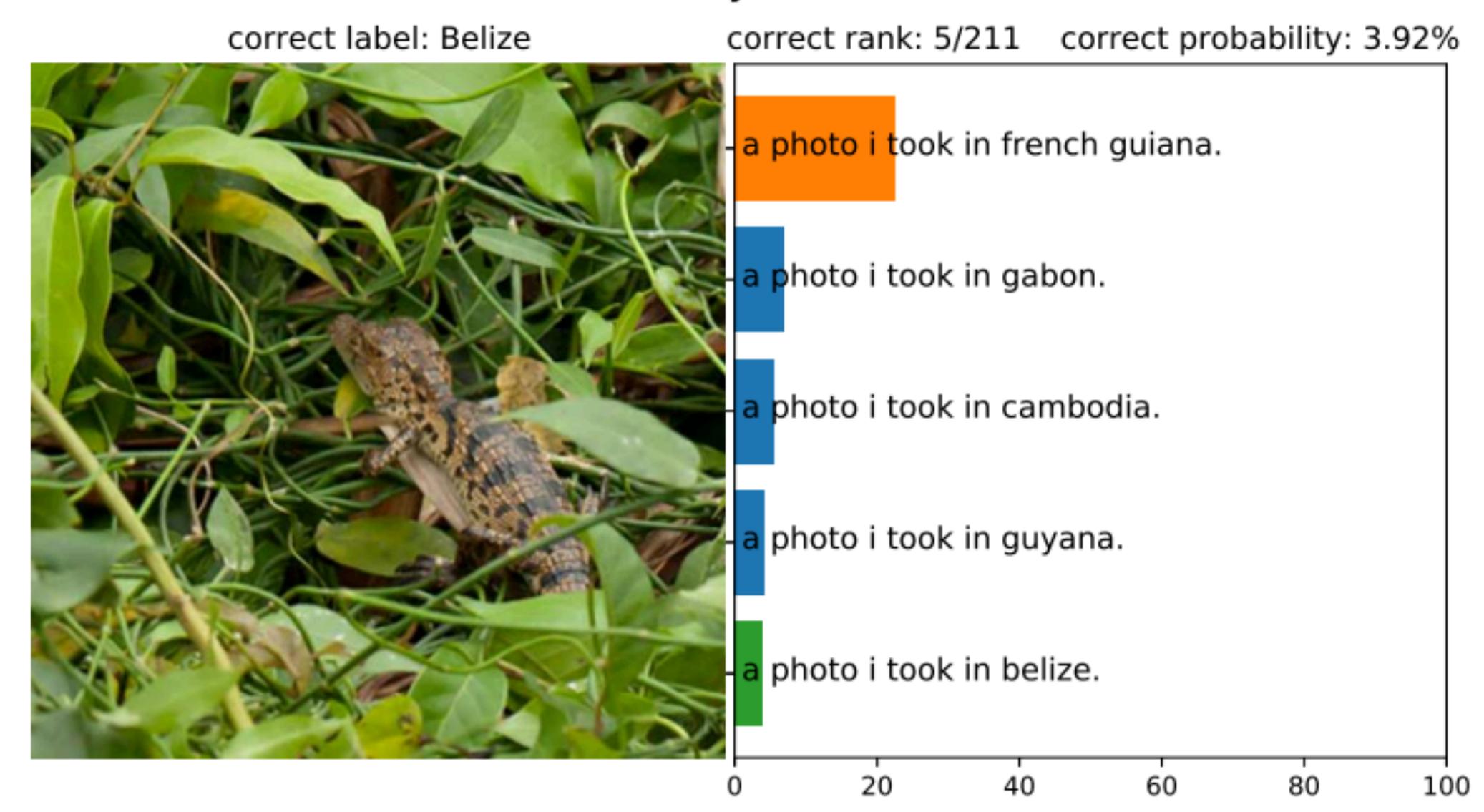
Stanford Cars

correct label: 2012 Honda Accord Coupe correct rank: 1/196 correct probability: 63.30%



CLIP: Zero-shot Results

Country211

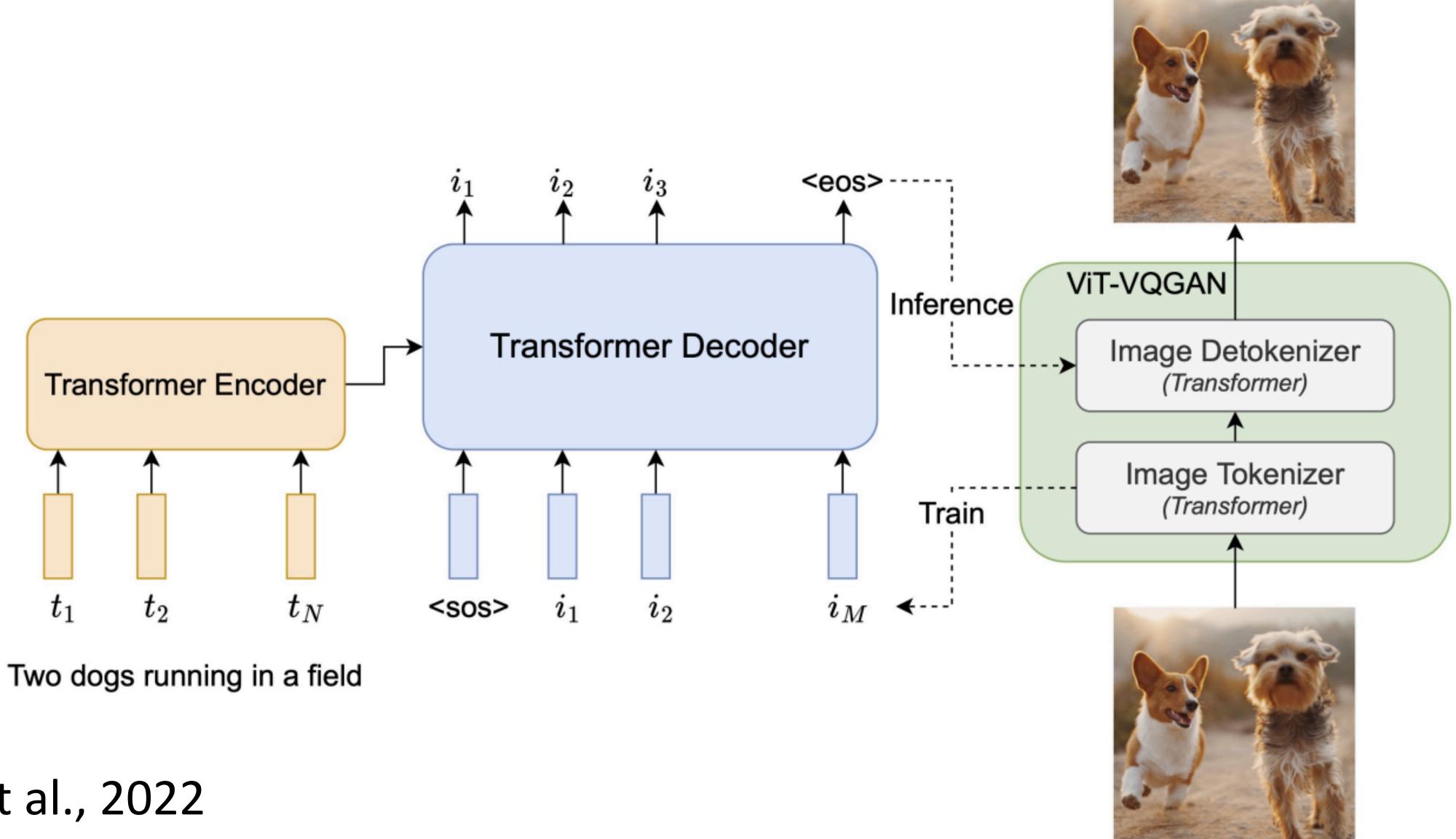


Parti

 Autoregressive text-to-image model (differs from the diffusion models you may have seen, like Stable Diffusion or DALL-E)

A. A photo of a frog reading the newspaper named "Toaday" written on it. There is a frog printed on the newspaper too.

Parti



Yu et al., 2022

Where are we today

- Explosion of multimodal pre-training for {video, audio, images, text}
- Many of these methods are Transformer-based
- Still haven't seen large-scale pre-training of this form advance text-only tasks, but there's potential!

Takeaways

- Cross-lingual methods allow us to transfer resources from English to other languages
- Multilingual models can be learned in a bitext-free way and can transfer between languages

 Multimodal methods can allow us to learn representations for images as well as text and provide a path towards language grounding

Next time: wrapup + discussion of ethics