

Announcements

- ► A1 due Thursday
- A2 released Thursday
- Fairness response (in class today) due in 1 week

Recap: Multiclass

- Multiclass classification: assign each instance one of several classes, not just two. Generalizes binary classification
- ightharpoonup Different weights: $\operatorname{argmax}_{y \in \mathcal{Y}} w_y^{\top} f(x)$
 - For neural networks: f(x) is the first n-1 layers of the network, then you multiply by a final linear layer at the end

Recap: Multiclass Logistic Regression

$$P(y = \hat{y}|\bar{x}) = \frac{\exp(\bar{w}_{\hat{y}}^{\top} f(\bar{x}))}{\sum_{y' \in \mathcal{Y}} \exp(\bar{w}_{y'}^{\top} f(\bar{x}))}$$

▶ Update: let $y^{(i)}$ be the gold label

$$\bar{w}_{y^{(i)}} \leftarrow \bar{w}_{y^{(i)}} + \alpha f(\bar{x}^{(i)}) \left(1 - P\left(y = y^{(i)} \mid \bar{x}^{(i)}\right)\right)$$

For all other y'

$$\bar{w}_{y'} \leftarrow \bar{w}_{y'} - \alpha f(\bar{x}^{(i)}) P\left(y = y' \mid \bar{x}^{(i)}\right)$$

Recap: Multiclass Logistic Regression

Today

- Multiclass examples
- Fairness in classification
- Intro to neural networks

Multiclass Examples

Text Classification

A Cancer Conundrum: Too Many Drug Trials, Too Few Patients

Breakthroughs in immunotherapy and a rush to develop profitable new treatments have brought a crush of clinical trials scrambling for patients.

By GINA KOLATA

Yankees and Mets Are on Opposite Tracks This Subway Series

As they meet for a four-game series, the Yankees are playing for a postseason spot, and the most the Mets can hope for is to play

By FILIP BONDY

Sports

~20 classes

Health

▶ 20 Newsgroups, Reuters, Yahoo! Answers, ...

Three-class task over sentence pairs

Not clear how to do this with simple bag-ofwords features

Entailment

A soccer game with multiple males playing. **ENTAILS** Some men are playing a sport.

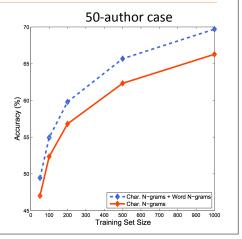
A black race car starts up in front of a crowd of people. **CONTRADICTS**

A man is driving down a lonely road

A smiling costumed woman is holding an umbrella. NFUTRAL

A happy woman in a fairy costume holds an umbrella.

Bowman et al. (2015)


Authorship Attribution

- Statistical methods date back to 1930s and 1940s
 - Based on handcrafted heuristics like stopword frequencies
 - ► Early work: Shakespeare's plays, Federalist papers (Hamilton v. Madison)
- ► Twitter: given a bunch of tweets, can we figure out who wrote them?
 - Schwartz et al. EMNLP 2013: 500M tweets, take 1000 users with at least 1000 tweets each
- ► Task: given a held-out tweet by one of the 1000 authors, who wrote it?

Authorship Attribution

- SVM with character 4-grams, words
 2-grams through 5-grams
- 1000 authors, 200 tweets per author => 30% accuracy
- 50 authors, 200 tweets per author>71.2% accuracy

Schwartz et al. (2013)

Authorship Attribution

 k-signature: n-gram that appears in k% of the authors tweets but not appearing for anyone else — suggests why these are so effective

Signature Type	10%-signature	Examples
Character n-grams	· ^_^	REF oh ok Glad you found it!
		Hope everyone is having a good afternoon ^_^
		REF Smirnoff lol keeping the goose in the freezer
	'yew '	gurl yew serving me tea nooch
		REF about wen yew and ronnie see each other
		REF lol so yew goin to check out tini's tonight huh???

Fairness

Schwartz et al. (2013)

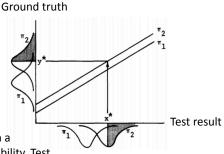
Fairness in Classification

- Classifiers can be used to make real-world decisions:
 - Who gets an interview?
 - Who should we lend money to?
 - Is this online activity suspicious?
 - Is a convicted person likely to re-offend?
- Humans making these decisions are typically subject to anti-discrimination laws; how do we ensure classifiers are fair in the same way?
- Many other factors to consider when deploying classifiers in the real world (e.g., impact of a false positive vs. a false negative) but we'll focus on fairness here

Fairness Response (SUBMIT ON CANVAS)

Consider having each data instance *x* associated with a **protected attribute A** when making a prediction. For example, suppose for sentiment analysis we also had information about the **ethnicity of the director** of the movie being reviewed.

- What do you think it would mean for a classification model to be discriminatory in this context? Try to be as precise as you can!
- Do you think our unigram bag-of-words model might be discriminatory according to your criterion above? Why or why not?
- Suppose we add A as an additional "word" to each example, so our bag-of-words can use it as part of the input. Do you think the unigram model might be discriminatory according to your criterion? Why or why not?
- Suppose we enforce that the model must predict at least k% positives across every value of A; that is, if you filter to only the data around a particular ethnicity, the model must predict at least k% positives on that data slice. Is this fair? Why/why not?



Fairness in Classification

Idea 1: Classifiers need to be evaluated beyond just accuracy

- T. Anne Cleary (1966-1968): a test is biased if prediction on a subgroup makes consistent nonzero prediction errors compared to the aggregate
- Individuals of X group could still score lower on average. But the errors should not be consistently impacting X

Member of π_1 has a test result higher than a member of π_2 for the same ground truth ability. Test penalizes π_2

Hutchinson and Mitchell (2018)

Fairness in Classification

Idea 1: Classifiers need to be evaluated beyond just accuracy

- Thorndike (1971), Petersen and Novik (1976): fairness in classification: ratio of predicted positives to ground truth positives must be approximately the same for each group ("equalized odds")
 - ► Group 1: 50% positive movie reviews. Group 2: 60% positive movie reviews
 - ► A classifier classifying 50% positive in both groups is unfair, regardless of accuracy
- Allows for different criteria across groups: imposing different classification thresholds actually can give a fairer result
- ► There are many other criteria we could use as well this isn't the only one!

Petersen and Novik (1976) Hutchinson and Mitchell (2018)

Discrimination

Idea 2: It is easy to build classifiers that discriminate even without meaning to

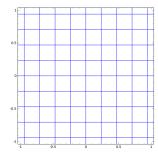
- ► A feature might correlate with minority group X and penalize that group:
 - Bag-of-words features can identify non-English words, dialects of English like AAVE, or code-switching (using two languages). (Why might this be bad for sentiment?)
 - ZIP code as a feature is correlated with race
- Reuters: "Amazon scraps secret AI recruiting tool that showed bias against women"
 - * "Women's X" organization, women's colleges were negative-weight features
 - Accuracy will not catch these problems, very complex to evaluate depending on what humans did in the actual recruiting process

Credit: https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCNIMK08G

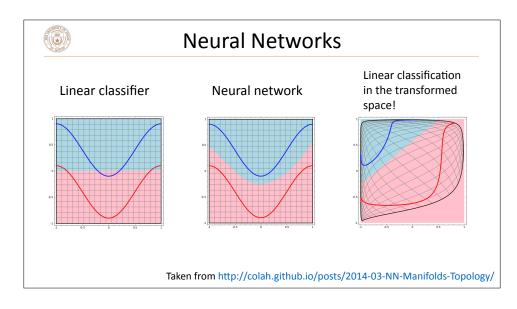
Takeaways

- What marginalized groups in the population should I be mindful of? (Review sentiment: movies with female directors, foreign films, ...)
- Can I check one of these fairness criteria?
- Do aspects of my system or features it uses introduce potential correlations with protected classes or minority groups?

Neural Networks

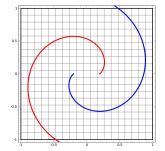


Neural Networks


$$\mathbf{z} = g(Vf(\mathbf{x}) + \mathbf{b})$$
Nonlinear Warp transformation space Shift

$$y_{\text{pred}} = \operatorname{argmax}_y \mathbf{w}_y^{\top} \mathbf{z}$$

Ignore shift / +b term for the rest of the course


Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Deep Neural Networks

$$\mathbf{z}_1 = g(V_1 f(\mathbf{x}))$$
 $\mathbf{z}_2 = g(V_2 \mathbf{z}_1)$
...
 $y_{\text{pred}} = \operatorname{argmax}_y \mathbf{w}_y^{\top} \mathbf{z}_n$

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/