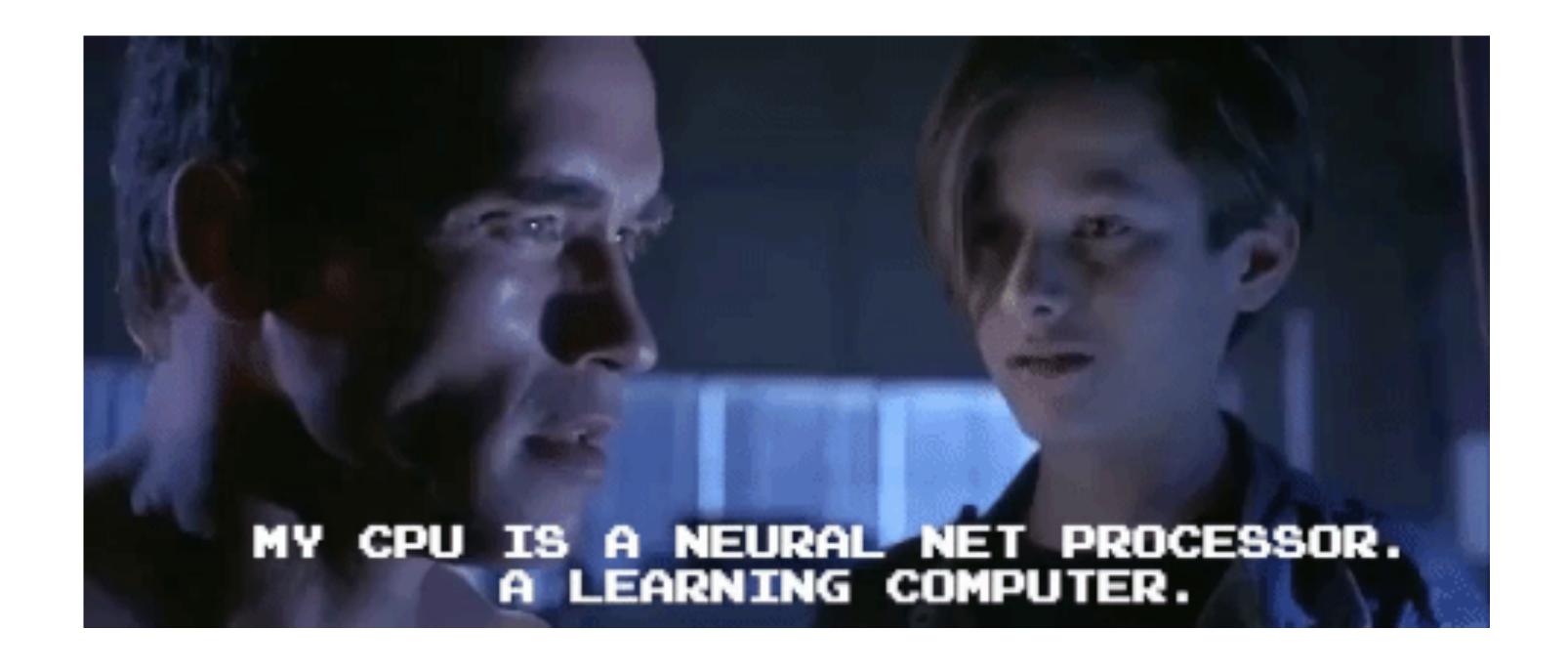
CS378: Natural Language Processing

Lecture 6: NN Implementation

Greg Durrett



Announcements

- Assignment 1 due today
- Assignment 2 out today, due in two weeks
- Fairness response due Tuesday (submit on Canvas)
- Slip days: do not need to notify me
- A1 learning rate / initialization / objective / etc.

Recap

Classification Review

See Instapoll

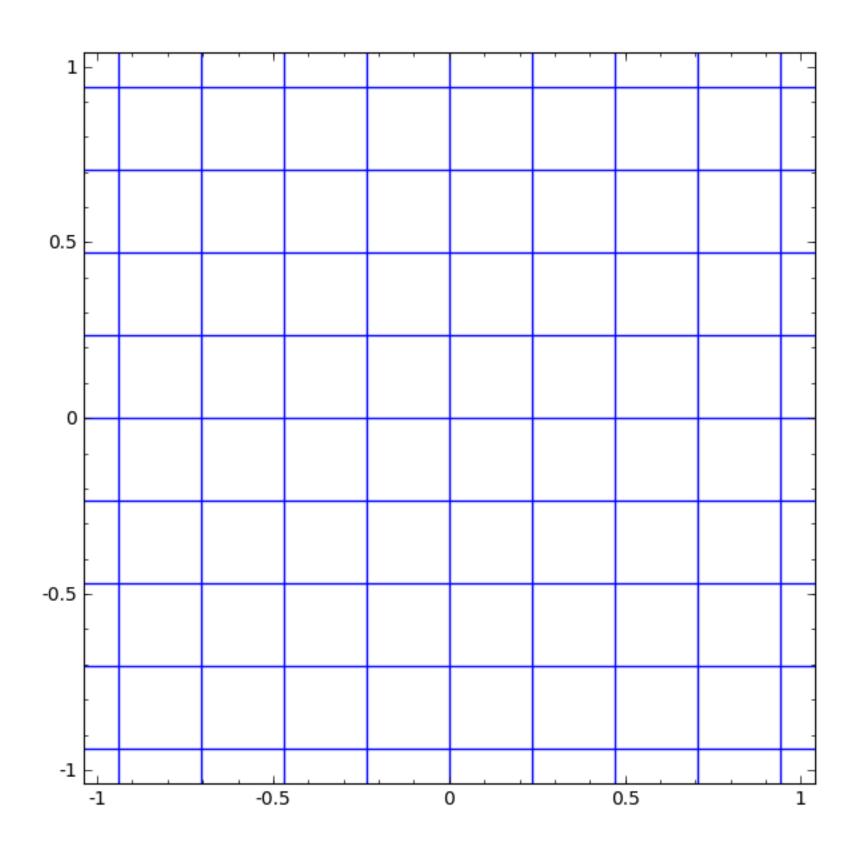
Neural Networks

Neural Networks

$$\mathbf{z} = g(Vf(\mathbf{x}) + \mathbf{b})$$
Nonlinear Warp Shift transformation space

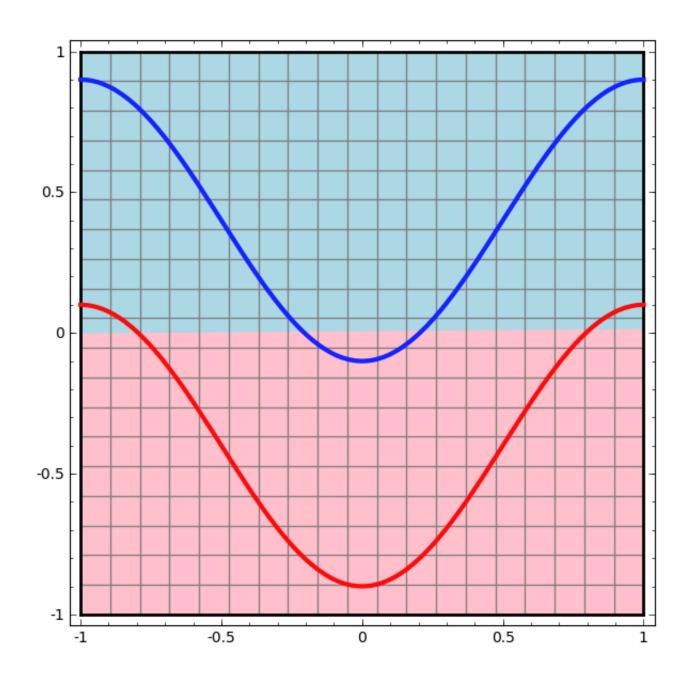
$$y_{\text{pred}} = \operatorname{argmax}_y \mathbf{w}_y^{\top} \mathbf{z}$$

Ignore shift / +b term for the rest of the course

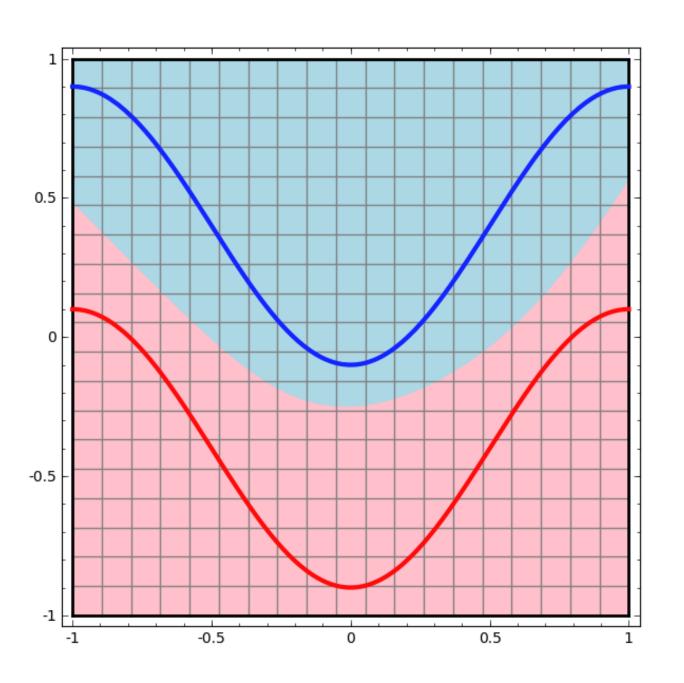


Neural Networks

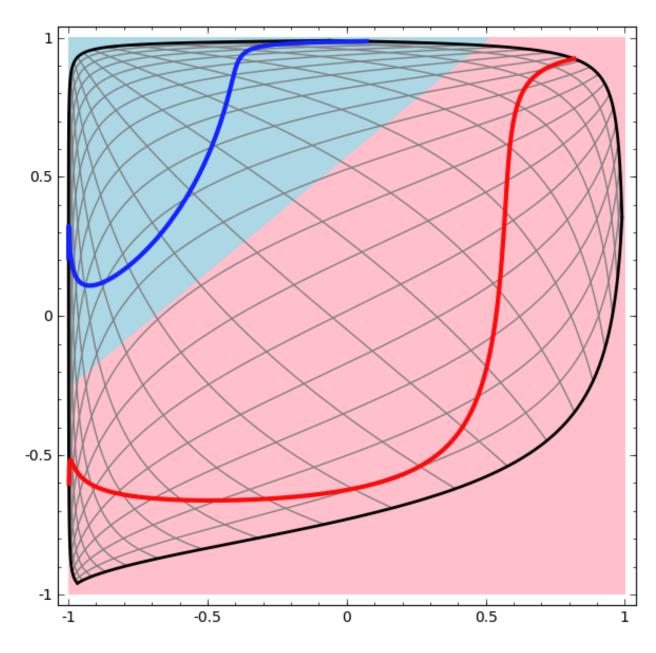
Linear classifier



Neural network



Linear classification in the transformed space!



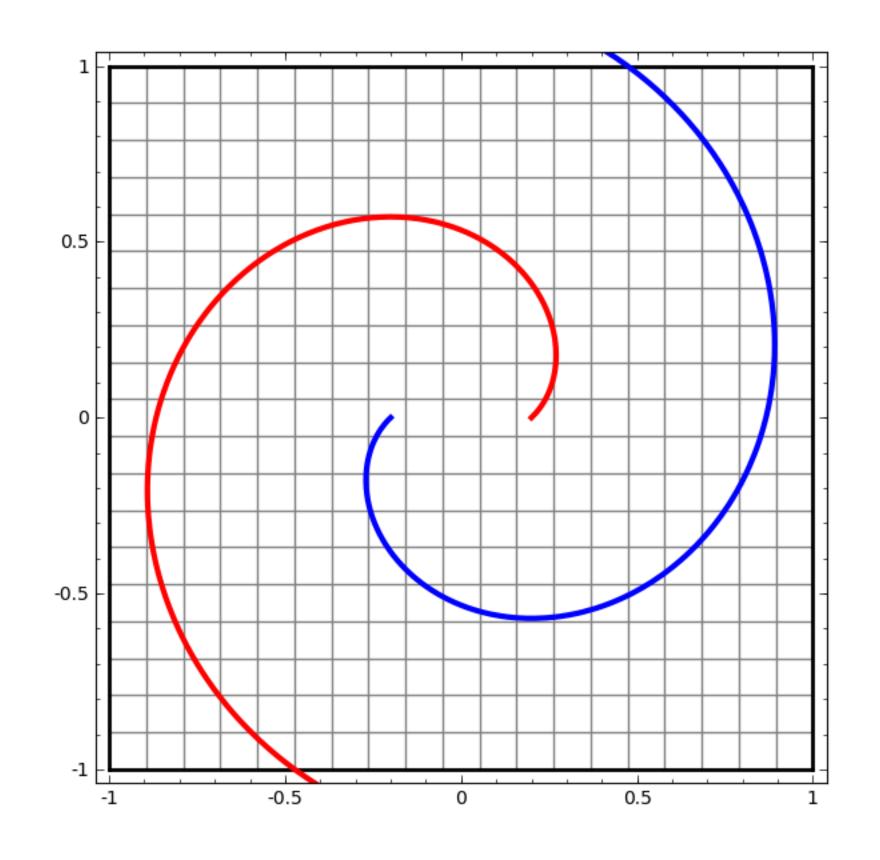
Deep Neural Networks

$$\mathbf{z}_1 = g(V_1 f(\mathbf{x}))$$

$$\mathbf{z}_2 = g(V_2\mathbf{z}_1)$$

. . .

$$y_{\text{pred}} = \operatorname{argmax}_{y} \mathbf{w}_{y}^{\top} \mathbf{z}_{n}$$



Feedforward Networks

Vectorization and Softmax

$$P(y|\mathbf{x}) = \frac{\exp(\mathbf{w}_y^{\top} f(\mathbf{x}))}{\sum_{y' \in \mathcal{Y}} \exp(\mathbf{w}_{y'}^{\top} f(\mathbf{x}))}$$

Single scalar probability

Three classes,"different weights"

$$\mathbf{w}_{1}^{\top}f(\mathbf{x})$$
 -1.1 $\overset{\overset{\leftarrow}{\mathsf{b}}}{\mathsf{b}}$ 0.036 $\mathbf{w}_{2}^{\top}f(\mathbf{x})$ = 2.1 $\overset{\leftarrow}{\mathsf{b}}$ 0.89 probs $\mathbf{w}_{3}^{\top}f(\mathbf{x})$ -0.4 0.07

- Softmax operation = "exponentiate and normalize"
- We write this as: $\operatorname{softmax}(Wf(\mathbf{x}))$

Logistic Regression as a Neural Net

$$P(y|\mathbf{x}) = \frac{\exp(\mathbf{w}_y^{\top} f(\mathbf{x}))}{\sum_{y' \in \mathcal{Y}} \exp(\mathbf{w}_{y'}^{\top} f(\mathbf{x}))}$$

Single scalar probability

$$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wf(\mathbf{x}))$$

Weight vector per class;W is [num classes x num feats]

$$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$$

Now one hidden layer

Neural Networks for Classification

$$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$$

$$d \text{ hidden units}$$

$$v \text{ probs}$$

$$d \times n \text{ matrix}$$

$$nonlinearity$$

$$num_classes \times d$$

$$n \text{ features}$$

$$num_classes \times d$$

$$n \text{ matrix}$$

Backpropagation (with pictures! Full derivations at the end of the slides)

Training Objective

$$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$$

Consider the log likelihood of a single training example:

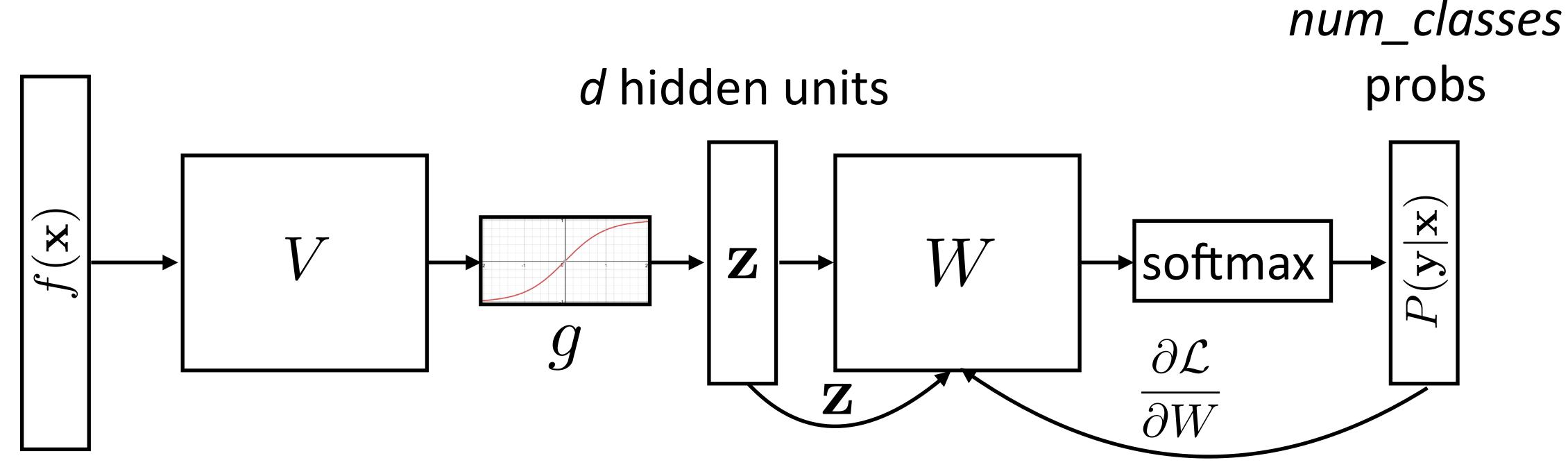
$$\mathcal{L}(\mathbf{x}, i^*) = \log P(y = i^* | \mathbf{x})$$

where i^* is the index of the gold label for an example

 Backpropagation is an algorithm for computing gradients of W and V (and in general any network parameters)

Backpropagation: Picture

$$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$$

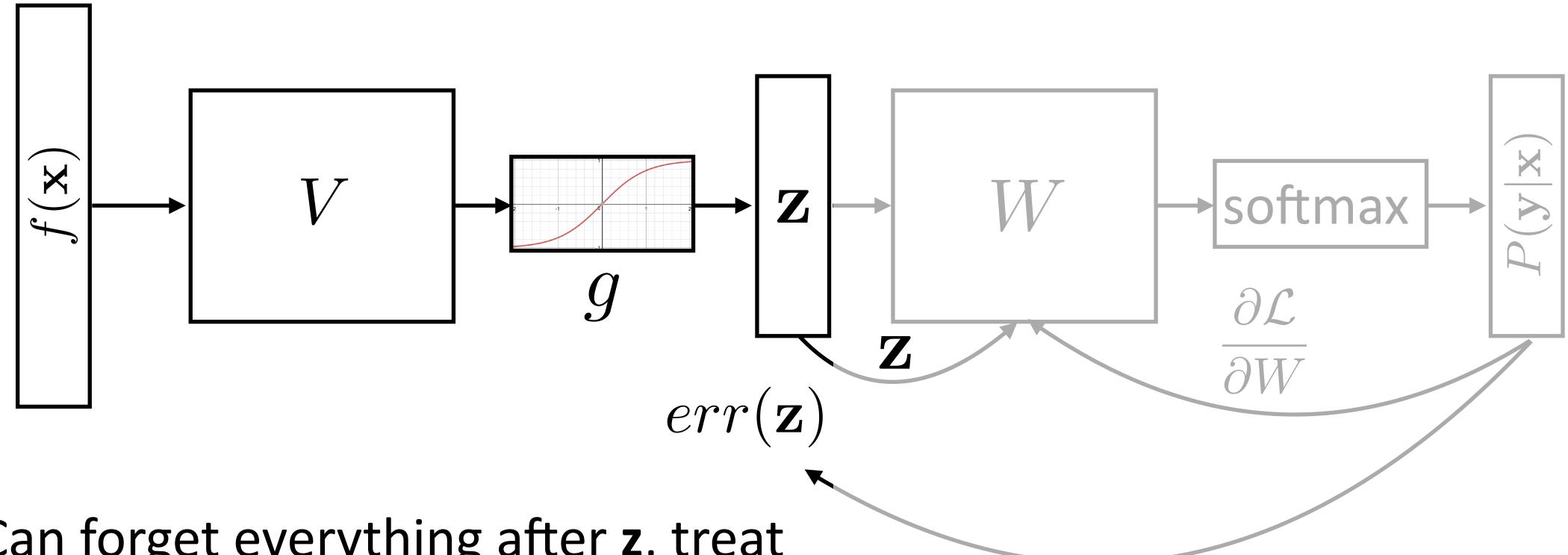


n features

 Gradient w.r.t. W: looks like logistic regression, can be computed treating z as the features

Backpropagation: Picture

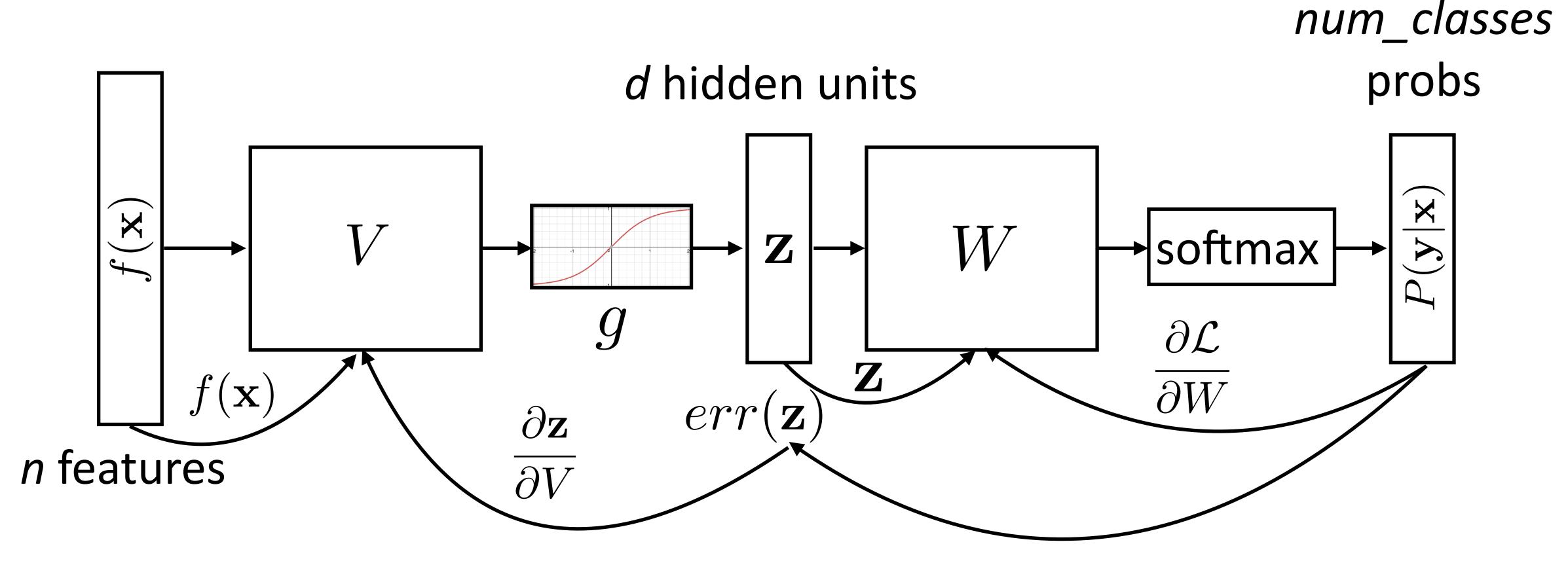
$$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$$



Can forget everything after z, treat it as the output and keep backpropping

Backpropagation: Picture

$$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$$



Combine backward gradients with forward-pass products

Pytorch Basics

(code examples are on the course website: ffnn_example.py)

PyTorch

- Framework for defining computations that provides easy access to derivatives
- Module: defines a neural network (can use wrap other modules which implement predefined layers)
- If forward() uses crazy stuff, you have to write backward yourself

```
# Takes an example x and computes result
forward(x):
    ...
# Computes gradient after forward() is called
backward(): # produced automatically
    ...
```

Computation Graphs in Pytorch

- Define forward pass for $P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$

```
class FFNN(nn.Module):
    def init (self, input size, hidden size, out size):
        super(FFNN, self). init ()
        self.V = nn.Linear(input size, hidden_size)
        self.g = nn.Tanh() # or nn.ReLU(), sigmoid()...
        self.W = nn.Linear(hidden size, out size)
        self.softmax = nn.Softmax(dim=0)
   def forward(self, x):
        return self.softmax(self.W(self.g(self.V(x)))
                     (syntactic sugar for forward)
```


Input to Network

Whatever you define with torch.nn needs its input as some sort of tensor, whether it's integer word indices or real-valued vectors

```
def form_input(x) -> torch.Tensor:
    # Index words/embed words/etc.
    return torch.from_numpy(x).float()
```

- torch.Tensor is a different datastructure from a numpy array, but you can translate back and forth fairly easily
- Note that translating out of PyTorch will break backpropagation; don't do this inside your Module

Training and Optimization

```
one-hot vector
P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))
                                     of the label
                                       (e.g., [0, 1, 0])
ffnn = FFNN(inp, hid, out)
optimizer = optim.Adam(ffnn.parameters(), lr=lr)
for epoch in range(0, num_epochs):
    for (input, gold label) in training_data:
       ffnn.zero grad() # clear gradient variables
       probs = ffnn.forward(input)
       loss = torch.neg(torch.log(probs)).dot(gold label)
       loss.backward()
                                negative log-likelihood of correct answer
       optimizer.step()
                                (can also use NLLLoss)
```


Initialization in Pytorch

```
class FFNN(nn.Module):
    def __init__(self, inp, hid, out):
        super(FFNN, self).__init__()
        self.V = nn.Linear(inp, hid)
        self.g = nn.Tanh()
        self.W = nn.Linear(hid, out)
        self.softmax = nn.Softmax(dim=0)
        nn.init.uniform(self.V.weight)
```

Initializing to a nonzero value is critical. See optimization video on course website. (Pytorch does this by default so you don't necessarily have to include it.)

Training a Model

Define modules, etc.

Initialize weights and optimizer

For each epoch:

For each batch of data:

Zero out gradient

Compute loss on batch

Autograd to compute gradients and take step on optimizer

[Optional: check performance on dev set to identify overfitting]

Run on dev/test set

Pytorch example

Batching

Batching

Modify the training loop to run over multiple examples at once

- Batch sizes from 1-100 often work well
- Can use the same network as before without modification

DANS

Word Embeddings

Currently we think of words as "one-hot" vectors

$$the = [1, 0, 0, 0, 0, 0, ...]$$
 $good = [0, 0, 0, 1, 0, 0, ...]$
 $great = [0, 0, 0, 0, 0, 1, ...]$

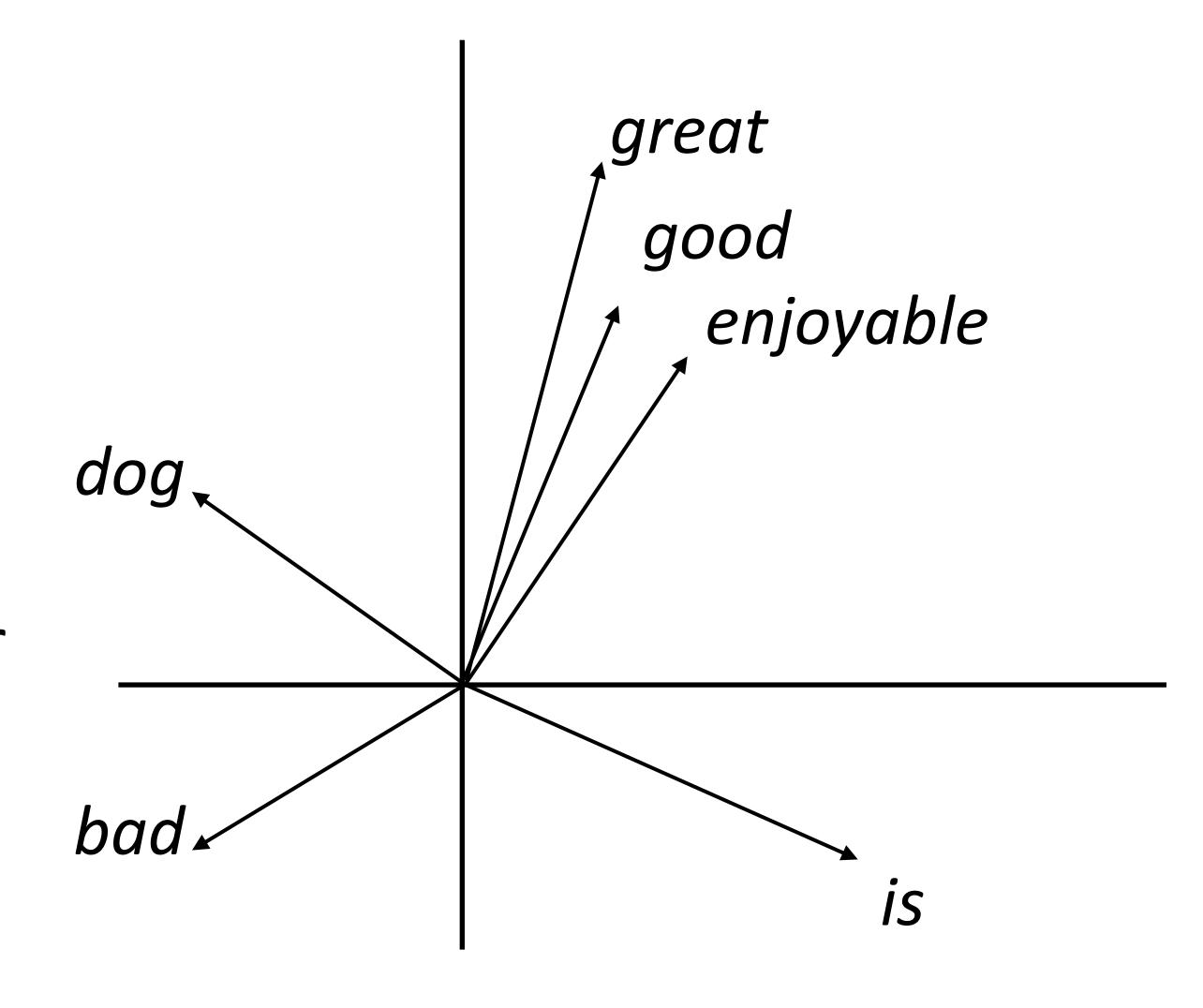
- good and great seem as dissimilar as good and the
- Neural networks are built to learn sophisticated nonlinear functions of continuous inputs; our inputs are weird and discrete

Word Embeddings

Want a vector space where similar words have similar embeddings

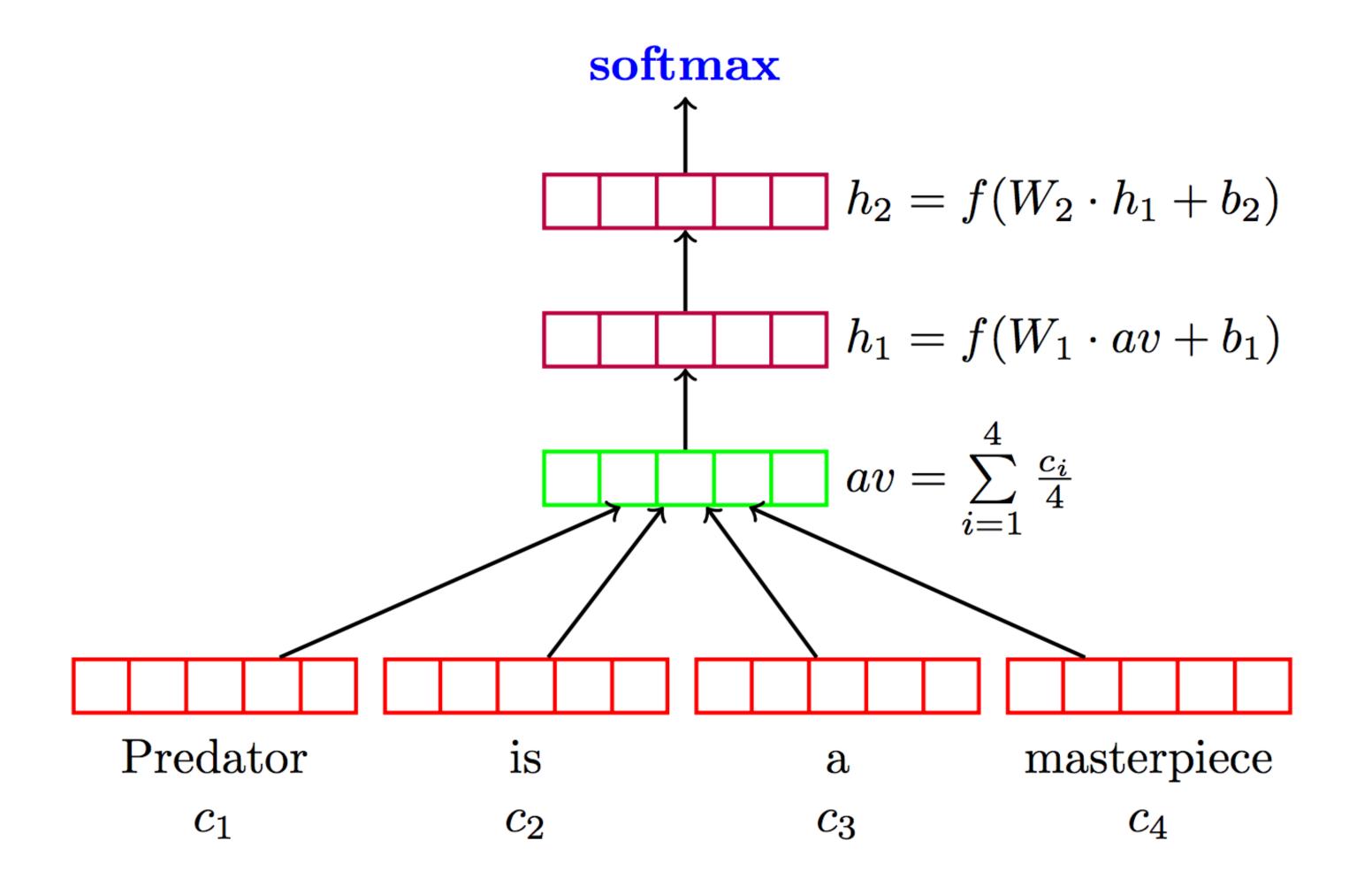
great ≈ good

- Next lecture: come up with a way to produce these embeddings
- For each word, want
 "medium" dimensional vector
 (50-300 dims) representing it



Deep Averaging Networks

 Deep Averaging Networks: feedforward neural network on average of word embeddings from input

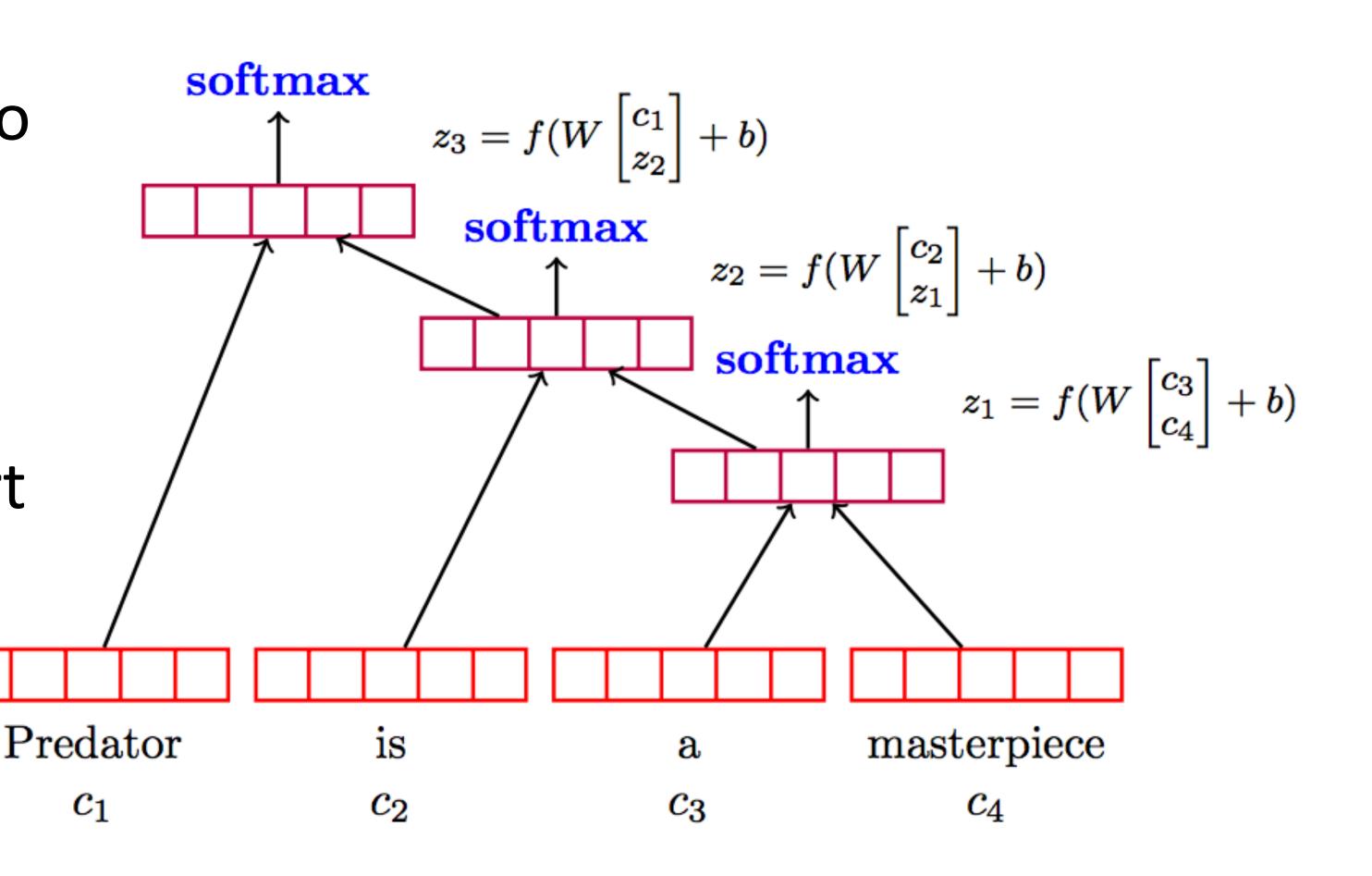


lyyer et al. (2015)

Deep Averaging Networks

 Widely-held view: need to model syntactic structure to represent language

 Surprising that averaging can work as well as this sort of composition



Sentiment Analysis

No pretrained embeddings	Model	RT	SST fine	SST bin	IMDB	Time	
			11116	UIII		(s)	
	DAN-ROOT		46.9	85.7		31	
	DAN-RAND	77.3	45.4	83.2	88.8	136	
	DAN	80.3	47.7	86.3	89.4	136	lyyer et al. (2015)
Bag-of-words Tree-structured neural networks	NBOW-RAND	76.2	42.3	81.4	88.9	91	
	NBOW	79.0	43.6	83.6	89.0	91	
	BiNB		41.9	83.1			Wang and
	NBSVM-bi	79.4			91.2		
	RecNN*	77.7	43.2	82.4			Manning (2012)
	RecNTN*		45.7	85.4			
	DRecNN		49.8	86.6		431	
	TreeLSTM		50.6	86.9			
	DCNN*		48.5	86.9	89.4		
	PVEC*		48.7	87.8	92.6		
	CNN-MC	81.1	47.4	88.1		2,452	Kim (2014)
	WRRBM*				89.2		

Deep Averaging Networks

Sentence	DAN	DRecNN	Ground Truth
who knows what exactly godard is on about in this film, but	positive	positive	positive
his words and images do n't have to add up to mesmerize			
you. it's so good that its relentless, polished wit can withstand	negative	positive	positive
not only inept school productions, but even oliver parker's			
movie adaptation			
too bad, but thanks to some lovely comedic moments and	negative	negative	positive
several fine performances, it's not a total loss			
this movie was not good	negative	negative	negative
this movie was good	positive	positive	positive
this movie was bad	negative	negative	negative
the movie was not bad	negative	negative	positive

Will return to compositionality with syntax and LSTMs

lyyer et al. (2015)

Word Embeddings in PyTorch

torch.nn.Embedding: maps vector of indices to matrix of word vectors

- \triangleright *n* indices => *n* x *d* matrix of *d*-dimensional word embeddings
- b x n indices => b x n x d tensor of d-dimensional word embeddings

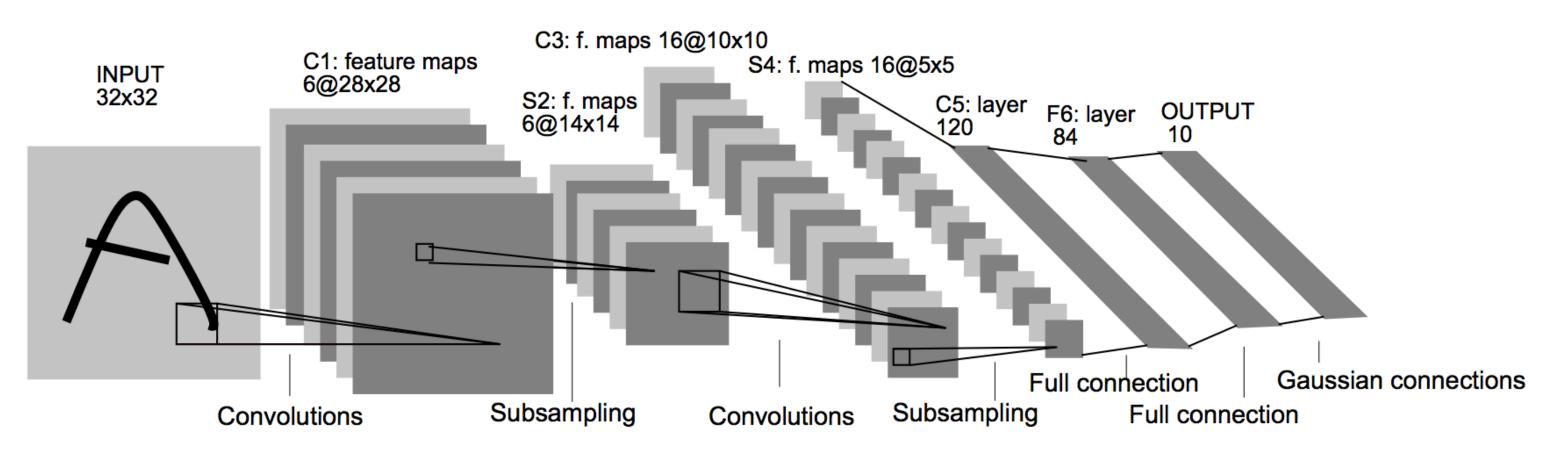
Word Embeddings

Word Embeddings

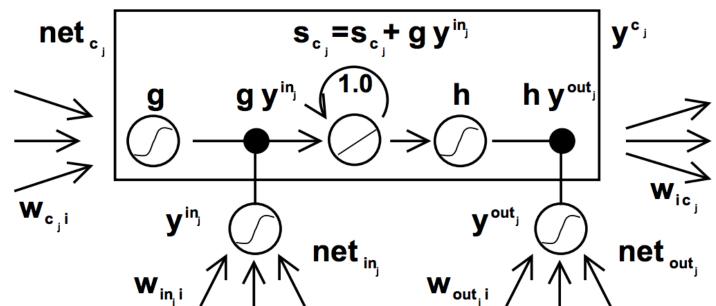
Neural Nets History

History: NN "dark ages"

Convnets: applied to MNIST by LeCun in 1998



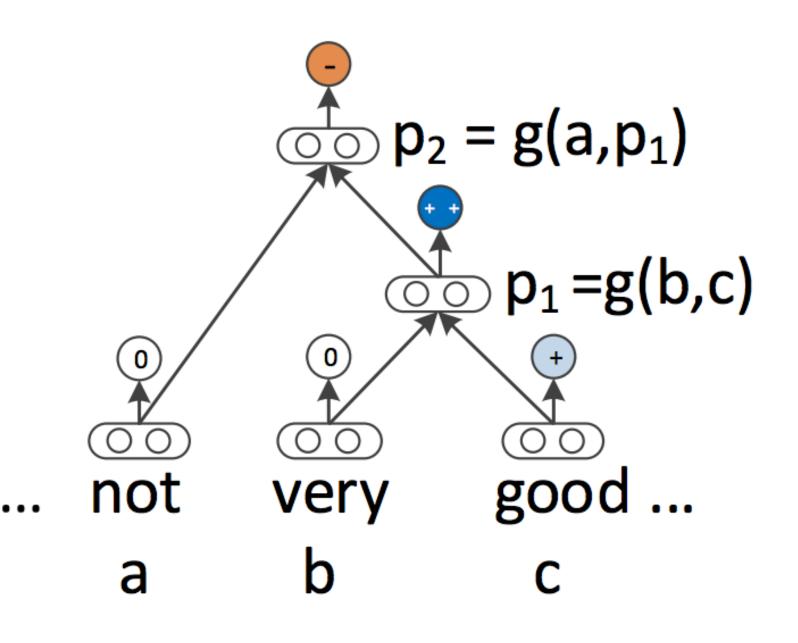
LSTMs: Hochreiter and Schmidhuber (1997)



Henderson (2003): neural shift-reduce parser, not SOTA

2008-2013: A glimmer of light...

- Collobert and Weston 2011: "NLP (almost) from scratch"
 - Feedforward neural nets induce features for sequential CRFs ("neural CRF")
- Krizhevskey et al. (2012): AlexNet for vision
- Socher 2011-2014: tree-structured RNNs working okay



2014: Stuff starts working

- Kim (2014) + Kalchbrenner et al. (2014): sentence classification / sentiment (convnets work for NLP?)
- Sutskever et al. (2014) + Bahdanau et al. (2014): seq2seq for neural MT (LSTMs work for NLP?)
- Chen and Manning transition-based dependency parser (feedforward)
- 2015: explosion of neural nets for everything under the sun

Why didn't they work before?

- ► Datasets too small: for MT, not really better until you have 1M+ parallel sentences (and really need a lot more)
- Optimization not well understood: good initialization, per-feature scaling
 - + momentum (Adagrad / Adadelta / Adam) work best out-of-the-box
 - ► Regularization: dropout is pretty helpful
 - Computers not big enough: can't run for enough iterations
- ► Inputs: need word representations to have the right continuous semantics

Backpropagation — Derivations (not covered in lecture, optional)

Training Neural Networks

$$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(W\mathbf{z})$$
 $\mathbf{z} = g(Vf(\mathbf{x}))$

Maximize log likelihood of training data

$$\mathcal{L}(\mathbf{x}, i^*) = \log P(y = i^* | \mathbf{x}) = \log (\operatorname{softmax}(W\mathbf{z}) \cdot e_{i^*})$$

- i^* : index of the gold label
- e_i : 1 in the *i*th row, zero elsewhere. Dot by this = select *i*th index

$$\mathcal{L}(\mathbf{x}, i^*) = W\mathbf{z} \cdot e_{i^*} - \log \sum_{j} \exp(W\mathbf{z}) \cdot e_{j}$$

Computing Gradients

$$\mathcal{L}(\mathbf{x}, i^*) = W\mathbf{z} \cdot e_{i^*} - \log \sum_{j} \exp(W\mathbf{z}) \cdot e_{j}$$

Gradient with respect to W:

$$\frac{\partial}{\partial W_{ij}} \mathcal{L}(\mathbf{x}, i^*) = \begin{cases} \mathbf{z}_j - P(y = i | \mathbf{x}) \mathbf{z}_j & \text{if } i = i^* \\ -P(y = i | \mathbf{x}) \mathbf{z}_j & \text{otherwise} \end{cases}$$

gradient w.r.t. W

$$\mathbf{z}_{j} - P(y = i|\mathbf{x})\mathbf{z}_{j}$$
 $-P(y = i|\mathbf{x})\mathbf{z}_{j}$

Looks like logistic regression with z as the features!

Computing Gradients: Backpropagation

$$\mathcal{L}(\mathbf{x}, i^*) = W\mathbf{z} \cdot e_{i^*} - \log \sum_{j} \exp(W\mathbf{z}) \cdot e_{j}$$

 $\mathbf{z} = g(Vf(\mathbf{x}))$

Activations at hidden layer

Gradient with respect to V: apply the chain rule

$$\frac{\partial \mathcal{L}(\mathbf{x}, i^*)}{\partial V_{ij}} = \boxed{\frac{\partial \mathcal{L}(\mathbf{x}, i^*)}{\partial \mathbf{z}}} \frac{\partial \mathbf{z}}{\partial V_{ij}}$$
[some math...]

$$err(root) = e_{i^*} - P(\mathbf{y}|\mathbf{x})$$

dim = $num_classes$

$$err(root) = e_{i^*} - P(\mathbf{y}|\mathbf{x})$$
 $\frac{\partial \mathcal{L}(\mathbf{x}, i^*)}{\partial \mathbf{z}} = err(\mathbf{z}) = W^{\top}err(root)$ $= num_classes$ $\dim = d$

Computing Gradients: Backpropagation

$$\mathcal{L}(\mathbf{x}, i^*) = W\mathbf{z} \cdot e_{i^*} - \log \sum_{j} \exp(W\mathbf{z}) \cdot e_{j}$$

 $\mathbf{z} = g(Vf(\mathbf{x}))$

Activations at hidden layer

Gradient with respect to V: apply the chain rule

$$\frac{\partial \mathcal{L}(\mathbf{x}, i^*)}{\partial V_{ij}} = \begin{bmatrix} \frac{\partial \mathcal{L}(\mathbf{x}, i^*)}{\partial \mathbf{z}} & \frac{\partial \mathbf{z}}{\partial V_{ij}} & \frac{\partial \mathbf{z}}{\partial V_{ij}} & \frac{\partial \mathbf{z}}{\partial \mathbf{a}} & \frac{\partial \mathbf{a}}{\partial V_{ij}} \end{bmatrix} \quad \mathbf{a} = V f(\mathbf{x})$$

- First term: gradient of nonlinear activation function at a (depends on current value)
- Second term: gradient of linear function
- First term: err(z); represents gradient w.r.t. z

Backpropagation

$$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$$

- Step 1: compute $err(root) = e_{i^*} P(\mathbf{y}|\mathbf{x})$ (vector)
- Step 2: compute derivatives of W using err(root) (matrix)
- Step 3: compute $\frac{\partial \mathcal{L}(\mathbf{x}, i^*)}{\partial \mathbf{z}} = err(\mathbf{z}) = W^{\top} err(\text{root})$ (vector)
- Step 4: compute derivatives of V using err(z) (matrix)
- Step 5+: continue backpropagation if necessary