CS378: Natural Language Processing

Lecture 6: NN Implementation

Greg Durrett [TP
I EXAS MY CPU IS A NEURAL™NET PROCESSOR.
A LEARNING COMPUTER.
The University of Texas at Austin

Announcements

> Assignment 1 due today

» Assignment 2 out today, due in two weeks

> Fairness response due Tuesday (submit on Canvas)
> Slip days: do not need to notify me

> Al learning rate / initialization / objective / etc.

Recap

Classification Review

> See Instapoll

Neural Networks

Neural Networks

z = g(Vf(x)+b)

/ N f
Nonlinear Warp Shift
transformation space

Ypred = argmax, w, Z

> lgnore shift / +b term for the
rest of the course

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Neural Networks

Linear classification
Linear classifier Neural network in the transformed

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Deep Neural Networks

71 — Q(Vlf(X))
79 — Q(szl)

- T
Ypred = argmax, W, Z

AAAAAAAAAAAAAA

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Feedforward Networks

Vectorization and Softmax

P(y|x) = T) > Single scalar probability

0.036

oftmax

wlf(x) -1l
- Three classes, -

e class
“different weights” wy f(x)= 21 — 0289

- probs
w3 f(X) .04 0.07

> Softmax operation = “exponentiate and normalize”

- We write this as: softmax(W f(x))

Logistic Regression as a Neural Net

GX]D(W;/r (%)) > Single scalar probability

P(y|x) = softmax(W f(x)) > Weight vector per class;
W is [num classes x num feats]

P(y|x) = softmax(Wg(V f(x))) - Now one hidden layer

Neural Networks for Classification

P(y|x) = softmax(Wgqg(V f(x)))
num classes
d hidden units probs

H
g

dXxnmatrix nonlinearity num_classes x d
n features (tanh, relu, ...) matrix

Backpropagation
(with pictures! Full derivations at the
end of the slides)

Training Objective

P(y|x) = softmax(Wgqg(V f(x)))
>~ Consider the log likelihood of a single training example:
L(x,1") =log P(y = i"|x)

where i* is the index of the gold label for an example

>~ Backpropagation is an algorithm for computing gradients of W and V
(and in general any network parameters)

Backpropagation: Picture

P(y|x) = softmax(Wgqg(V f(x)))
num classes
d hidden units probs

7 H
g oL
Z oW
n features

>~ Gradient w.r.t. W: looks like logistic
regression, can be computed treating z
as the features

Backpropagation: Picture

P(y|x) = softmax(Wgqg(V f(x)))

err(z)

>~ Can forget everything after z, treat
it as the output and keep backpropping

Backpropagation: Picture

P(y|x) = softmax(Wgqg(V f(x)))
num classes
d hidden units probs

H . —

€7°7°

> Combine backward gradients with forward-pass products

Pytorch Basics

(code examples are on the course website: ffnn _example.py)

PyTorch

> Framework for defining computations that provides easy access to
derivatives

> Module: defines a neural { torch.nn.Module
network (can use wrap
other modules which
implement predefined

Takes an example x and computes result
forward(x):

layers) # Computes gradient after forward() is called

~ |f forward() uses crazy
stuff, you have to write
backward yourself

Computation Graphs in Pytorch

> Define forward pass for P(y|X) — SoftmaX(Wg(Vf(X)))

class FFNN(nn.Module):
def 1nit (self, input size, hidden size, out size):
super (FFNN, self). 1nit ()
self.V = nn.Linear(input size, hidden size)
self.g = nn.Tanh() # or nn.ReLU(), sigmoid()...
self.W = nn.Linear(hidden size, out size)
self.softmax = nn.Softmax(dim=0)

def forward(self, x):
return self.softmax(self.W(self.g(self.V(x))))

(syntactic sugar for forward)

Input to Network

> Whatever you define with torch.nn needs its input as some sort of
tensor, whether it’s integer word indices or real-valued vectors

def form input(x) -> torch.Tensor:
Index words/embed words/etc.
return torch.from numpy(x).float()

> torch.Tensor is a different datastructure from a numpy array, but you can
translate back and forth fairly easily

> Note that translating out of PyTorch will break backpropagation; don’t
do this inside your Module

Training and Optimization

onhe-hot vector

P(y|x) = softmax(Wg(V f(x))) of the label

_ . . (e.g., [0, 1, O])
ffnn = FFNN(inp, hid, out)

optim.Adam(ffnn.

optimizer arameters(), lr=lr)

for epoch i1n range(0, num &pochs):
for (input, gold label) 1n training data:
ffnn.zero grad() # clear gradient variables

probs = ffnn.forward(input)
loss = torch.neg(torch.log(probs)).dot(gold label)

loss.backward() ™~ negative log-likelihood of correct answer
optimizer.step() (can also use NLLLoss)

Initialization in Pytorch

class FFNN(nn.Module):
def 1nit (self, inp, hid, out):
super (FFNN, self). 1init ()
self.V = nn.Linear(inp, hid)
self.g = nn.Tanh()
self .W = nn.Linear(hid, out)
self.softmax = nn.Softmax(dim=0)

nn.init.uniform(self.vV.weight)

> Initializing to a nonzero value is critical. See optimization video on course
website. (Pytorch does this by default so you don’t necessarily have to
include it.)

Training a Model

Define modules, etc.
Initialize weights and optimizer

For each epoch:
For each batch of data:

Zero out gradient
Compute loss on batch
Autograd to compute gradients and take step on optimizer

[Optional: check performance on dev set to identify overfitting]

Run on dev/test set

Pytorch example

Batching

Batching

> Modify the training loop to run over multiple examples at once

input is [batch size, num feats]
gold label is [batch size, num classes]

def make update(input, gold label)

probs = ffnn.forward(input) # [batch size, num classes]
loss = torch.sum(torch.neg(torch.log(probs)).dot(gold label))

> Batch sizes from 1-100 often work well

> Can use the same network as before without modification

DANS

Word Embeddings

> Currently we think of words as “one-hot” vectors
the=(1,0,0,0,0,0, ...]
good=1[0,0,0,1,0,0, ..]
great=10,0,0,0,0,1, ...]

> good and great seem as dissimilar as good and the

> Neural networks are built to learn sophisticated nonlinear functions
of continuous inputs; our inputs are weird and discrete

Word Embeddings

> Want a vector space where similar words have similar embeddings

great =~ good

great
~ Next lecture: come up with a good
way to produce these enjoyable

embeddings
dog

> For each word, want
“medium” dimensional vector
(50-300 dims) representing it

bad
IS

Deep Averaging Networks

» Deep Averaging Networks: feedforward neural network on average of
word embeddings from input

softmax

L LT T Jhe=f(Wa-hy+bo)
jj#]jhlﬂwl-avw

4

av =) Z
// \ i}
L] LT] || ||

Predator 1S a masterpiece

c1 C2 c3 C4 lyyer et al. (2015)

Deep Averaging Networks

~ Widely-held view: need to

softmax

model syntactic structure to T 2 = FOW || +)
_22-
represent language T] coftmax -
\ 1 22 = f(W | 2| +b)
..zl...
. - | | softmax o
~ Surprising that averaging '\ 1 = fW || +0)
can work as well as this sort |
of composition /
Predator 1S a masterpiece
Cq C2 C3 C4

lyyer et al. (2015)

Sentiment Analysis

Model RT SST SST IMDB Time
No pretrained fine b (s)
- DAN-ROOT — 469 857 — 31
m in
embeddings ™~ DN RAND 773 454 832 888 136
DAN 80.3 47.7 863 894 136| lyyer et al. (2015)
NBOW-RAND 762 423 814 8809 91
NBOW 790 436 836 89.0 91
Bag-of-words BiNB — 419 81 — — \Wangand
NBSVM-bi 794 — — 912 =1 (5012
RecNN™ 777 432 824 — — anning ()
RecNTN™ — 457 854 — —
- DRecNN — 498 86.6 — 431
Tree-structured TreeLSTM 506 869 — _
neural networks DCNN* 485 869 894 _
PVEC* 487 87.8 92.6 _ |
CNN-MC CNN-MC 811 474 881 — 2452 Kim (2014)
WRRBM* 892 —

Deep Averaging Networks

Sentence DAN DRecNN Ground Truth
who knows what exactly godard is on about in this film, but positive positive positive
his ‘words and images do @’t have to ‘add up to ‘mesmerize
you.
it’s so [good that its relentless, polished wit can withstand negative positive positive
not only dnept school productions, but even oliver parker ’s
movie adaptation
too ®ad), but thanks to some lovely comedic moments and negative negative positive
several fine performances, it’s @ob a total loss
this movie was @ob (good negative negative negative
this movie was (good positive positive positive
this movie was (bad negative negative negative
the movie was fiob bad negative negative positive

> Will return to compositionality with syntax and LSTMs

lyyer et al. (2015)

Word Embeddings in PyTorch

> torch.nn.Embedding: maps vector of indices to matrix of word vectors

Predator is a masterpiece

1820 24 1 2047

'
(T T T T T 1]

> nindices => n x d matrix of d-dimensional word embeddings

> b x nindices => b x n x d tensor of d-dimensional word embeddings

Word Embeddings

Word Embeddings

Neural Nets History

History: NN “dark ages”

> Convnets: applied to MNIST by LeCun in 1998

C3: f. maps 16@10x10

INPUT C1: feature maps S4: f. maps 16@5x5
6@28x28
S2: f. maps

32x32
6@14x14

C5: layer
120 F6 layer OUTPUT

LASONN

‘ FuII conAectuon ‘ Gau55|an connections

Y

—

Convolutions Subsampling Convolutions Subsampllng Full connection net_

9

scj=scj+ g yinj

> LSTMs: Hochreiter and Schmidhuber (1997) D

ol

h h youtj
o—>)>()—e

W

v @net v’ @net

wii /N i 7N

> Henderson (2003): neural shift-reduce parser, not SOTA

2008-2013: A glimmer of light...

» Collobert and Weston 2011: “NLP (almost) from scratch”

> Feedforward neural nets induce features for
sequential CRFs (“neural CRF”)

> Krizhevskey et al. (2012): AlexNet for vision 6
© o P2 = 8(a,p1)

> Socher 2011-2014: tree-structured RNNs working o> p1=g(b,c)

okay © © ©

GO @O QO
. not very good ...

a b C

2014: Stuff starts working

> Kim (2014) + Kalchbrenner et al. (2014): sentence classification / sentiment
(convnets work for NLP?)

> Sutskever et al. (2014) + Bahdanau et al. (2014): seq2seq for neural MT
(LSTMs work for NLP?)

> Chen and Manning transition-based dependency parser (feedforward)

> 2015: explosion of neural nets for everything under the sun

Why didn’t they work before?

> Datasets too small: for MT, not really better until you have 1M+ parallel
sentences (and really need a lot more)

> Optimization not well understood: good initialization, per-feature scaling
+ momentum (Adagrad / Adadelta / Adam) work best out-of-the-box

> Regularization: dropout is pretty helpful

> Computers not big enough: can’t run for enough iterations

> Inputs: need word representations to have the right continuous semantics

Backpropagation — Derivations
(not covered in lecture, optional)

Training Neural Networks

P(y|x) = softmax(Wz) z = g(V f(x))

- Maximize log likelihood of training data

L(x,7") =log P(y = 1"|x) = log (softmax(Wz) - ¢;«)
> [*: index of the gold label

>~ ei: 1in the ith row, zero elsewhere. Dot by this = select ith index

L(x,7") =Wz-e; — log Z exp(Wz) - e,

J

Computing Gradients

L(x,2") =Wz-e; — log Z exp(Wz) - e,

J gradient w.r.t. W
> Gradient with respect to W: J
z; — Ply=1|x)z; ifj=j* /
0 £(x.i") = J J
OWi; —P(y =1|x)z; otherwise

> Looks like logistic regression with z as the features!

Computing Gradients: Backpropagation

L(x,17)=Wz-e; —log Z exp(Wz)-e; 27 g(V f(x))

5 Activations at

hidden layer

>~ Gradient with respect to V: apply the chain rule

OL(x,1*) |0L(x,1")| Oz
8‘/;']' N 6Z 6"/@
w‘e math...]

err(root) = e;« — P(y|x) OL(x, 7"
dim = num classes

Computing Gradients: Backpropagation

L(x,17)=Wz-e; — logZexp Wz)-e;, %= g(V f(x))
j Activations at
hidden layer

>~ Gradient with respect to V: apply the chain rule

8£ X 1 07 B 8g(a) oa q — Vf(X)
8‘/;] 8‘/;] N oa 8‘/”

> First term: gradient of nonlinear activation function at a (depends on
current value)

> Second term: gradient of linear function

> First term: err(z); represents gradient w.r.t. z

Backpropagation

P(y|x) = softmax(Wgqg(V f(x)))
- Step 1: compute err(root) = e;« — P(y|x) (vector)

> Step 2: compute derivatives of W using err(root) (matrix)

0L(x,1")
0z
> Step 4: compute derivatives of V using err(z) (matrix)

~ Step 3: compute =err(z) =W err(root) (vector)

> Step 5+: continue backpropagation if necessary

