CS 378 Lecture 7
Word Embeddings
Announcements

- Fairness response due today
- Friday: talk by Nanyun Peng (UCLA)

Recap Last time: FFNNs

$$
P(\bar{y} \mid \bar{x})=\operatorname{softmax}\left(w_{g}(V f(\bar{x}))\right)
$$

Pytorch basics

Deep Averaging Network (A2)

How does this relate to BoW?
Word Embeddings
So far: one -hot representations of words
movie was good \rightarrow

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & 1 & 1 \\
\text { movie } & \text { was } & \text { good }
\end{array}\right]} \\
& =\text { movie }[000010000] \\
& \text { single } 1 \\
& + \text { was }[00 \ldots 100] \\
& +\operatorname{good}[00 \ldots 1]
\end{aligned}
$$

Problem: (1) Lang vectors
(2) good vs. grant, not similar
film was great I marie is good
Instead of $\sim 10 k$ dims, how about ~ 100 ?

Distributional hypothesis
JR Firth 1957 "You shall know a ward by the company it keeps"

I watched the movie
I watched the film
The film inspired me The movie inspired me

I took a picture with film There was a film on the liquid

Polysemous: word has multiple senses/ meanings

Mikolar et al. Lob wordzrec Learn 2 vectors for every work word rec + context rec.

Attempt to predict context given word

Skip-gran
Input: a corpus of text
Output: \bar{V}_{w}, \bar{c}_{w} for each w word context in vocal
(for applications: use either \bar{V} or \bar{c} or $\bar{v}+\bar{c}$)
Hyperparameters:d $(50 \sim 300)$ window size K
look in both directions

Let $k=1 \quad 2$
The film inspires me

word, context

$$
\left.\begin{array}{l}
\text { (film, The) } \\
\text { (film, inspired) } \\
\text { (film, me) }
\end{array}\right\} \begin{aligned}
& \text { Training } \\
& \text { examples }
\end{aligned}
$$

Other pairs (The, film) (inspired -..)

Model: (skip-gram) vocab V
$P($ context $=y \mid$ word $=x)$

$$
=\frac{e^{\bar{v}_{x} \cdot \bar{c}_{y}}}{\sum_{y^{\prime} \in V} e^{\bar{v}_{x} \cdot \bar{c}_{y^{\prime}}}}
$$

distribution over all context words in V
parameters: vectors $\bar{V}|V| \times d$ randomly initialized $\bar{c} \quad|V| x d$
Training $(x, y) \uparrow$ train examples Maximize $\sum_{(x, y) \text { in data }} \log P($ context $=y /$ worn $x x)$

Ex Carpus $=I$ saw

$$
\text { vocab }=\{I, \text { saw }\}
$$

Assume: $\bar{V}_{I}=\left[\begin{array}{ll}1 & 0\end{array}\right] \bar{V}_{\text {saw }}=\left[\begin{array}{ll}0 & 1\end{array}\right]$

(1) Let $\bar{c}_{\text {saw }}=\left[\begin{array}{ll}1 & 0\end{array}\right]$

$$
\bar{C}_{I}=\left[\begin{array}{ll}
0 & 1
\end{array}\right]
$$

What is
$P($ context lword=sai)
$P($ context $=5 a w \mid$ word $=$ saw $)$

$$
=\frac{e^{\bar{v}_{\text {saw }} \cdot \bar{c}_{\text {saw }}}}{e^{\bar{v}_{\text {saw }} \cdot \tau_{\text {saw }}}+e^{\bar{v}_{\text {saw }} \cdot \bar{c}_{工}}}=\frac{1}{1+e}
$$

(2) What are the values of \bar{C} that maximize livelihood? see prev page
(3) Why do we have $\bar{v} \neq \vec{c}$? Why two spaces?
dot product of word w/self would be high
(4) "we saw" if we add fris, should get $\bar{V}_{\text {we }}=\bar{V}_{\text {I }}$

Other methods
Fast Text: eachword embedding = Sum of char n grams

Problem with skip-gram:
For each example, how expensive is it to compute $P(c \mid w)$?
$|V|$ vocab d-dim vectors
$O(|V| d)$ one evaluation
Corpus: $|C| \cdot k \underset{\sim}{\downarrow} \stackrel{\downarrow}{\sim} \mid k)$
whole training: $O(|V| d|C| K)$

Alternative:
Skip-gram with negative sampliy (SGNS)
Take (word, context) pairs as "real" data
Sample "fake" data
Learn a binary classifier

$$
P(\text { Real } \mid x, y)=\frac{e^{\bar{v}_{x} \cdot c_{y}}}{1+e^{\nabla_{x} \cdot c_{y}}}
$$

(2014)
Glove Global Vectors
Factorizes a matrix of (word, context) counts the I saw..

$$
S G \approx S G N S \approx G \cdot V e
$$

Glove has no dependence on corpus size

