CS378: Natural Language Processing Lecture 8: Bias in Embeddings, Multilingual Embeddings

Greg Durrett

Announcements

- Assignment 2 due in one week
- Bias in embeddings response due next Tuesday (submit on Canvas)
- Nanyun Peng talk Friday; 11am 6.302

Recap

Playing around with embeddings

See Instapoll

Using Word Embeddings

- Approach 1: learn embeddings as parameters from your data
 - Often works pretty well
- Approach 2: initialize using GloVe, keep fixed
 - Faster because no need to update these parameters
- Approach 3: initialize using GloVe, fine-tune
 - Works best for some tasks

Beyond Word Embeddings

fastText: Sub-word Embeddings

Same as SGNS, but break words down into n-grams with n = 3 to 6

where:

3-grams: <wh, whe, her, ere, re>

4-grams: <whe, wher, here, ere>,

5-grams: <wher, where, here>,

6-grams: <where, where>

Replace $w \cdot c$ in skip-gram computation with $\left(\sum_{g \in ngrams} w_g \cdot c\right)$

$$\left(\sum_{g \in \text{ngrams}} w_g \cdot c\right)$$

Preview: Subword Tokenization

- Words are a difficult unit to work with, word vocabularies get very large
- Character-level models don't work well
- Compromise solution: use thousands of "word pieces" (which may be full words but may also be parts of words)

Input: _the _eco tax _port i co _in _Po nt - de - Bu is ...

 Rare words (ecotax, portico, Pont-de-Buis) all get broken up into smaller units we can embed

Sennrich et al. (2016)

Preview: Subword Tokenization

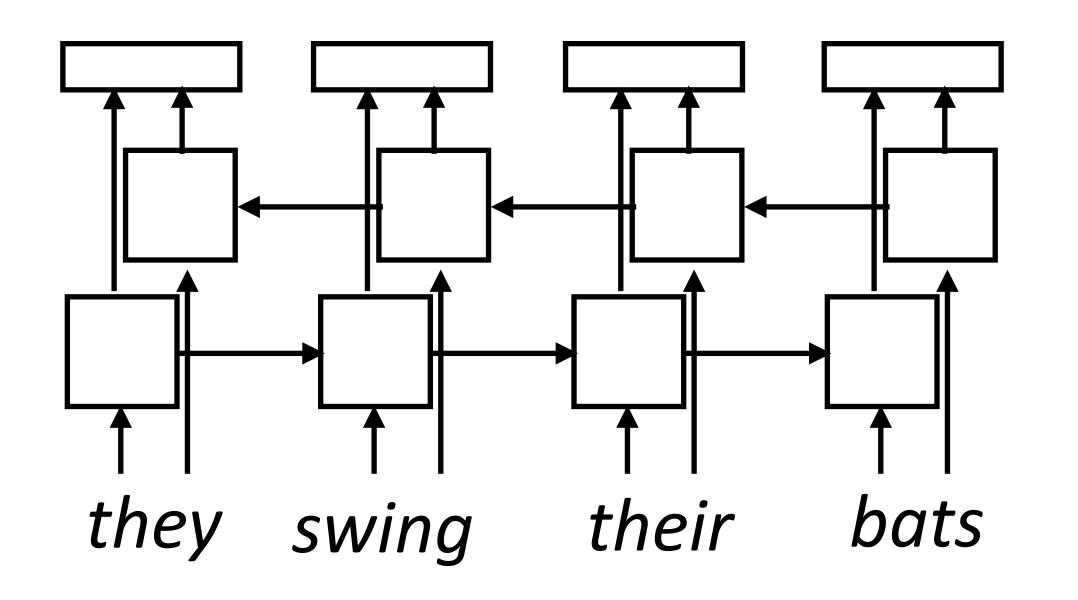
```
Original:
                      furiously
                                                  Original:
                                                              tricycles
                                                              _{t} | ric |
                                                      BPE:
                                        (b)
(a)
              BPE:
                      _fur
                             iously
                                                                            cles
                                             Unigram LM:
                                                              _tri | cycle
     Unigram LM:
                            ious | ly
                      _fur
          Original:
                     Completely preposterous suggestions
                     _Comple |
                               | t | ely |
                                        _prep | ost |
(c)
             BPE:
                                                                 _suggest
                                                       erous
                                                                            ions
                       _Complete | ly
                                                                 _suggestion | s
     Unigram LM:
                                         _pre | post | er | ous
```

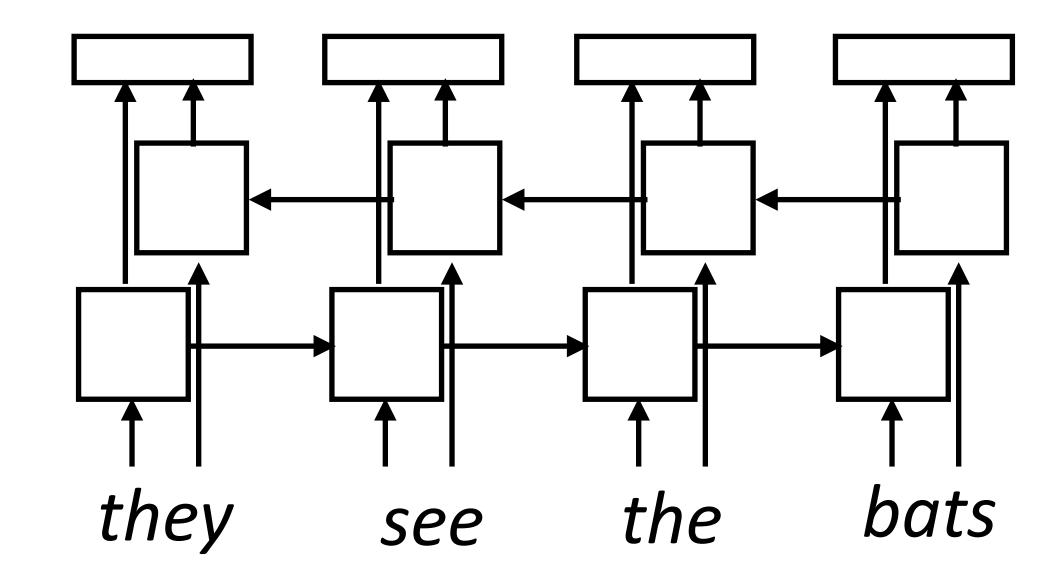
 Byte-pair encoding (BPE) produces less linguistically plausible units than another technique based on a unigram language model

Sentence Embeddings

What if we want embedding representations for whole sentences?

 Skip-thought vectors (Kiros et al., 2015), similar to skip-gram generalized to a sentence level (more later)


Is there a way we can compose vectors to make sentence representations?
Summing?


Will return to this in a few weeks as we move on to syntax and semantics

Preview: Context-dependent Embeddings

How to handle different word senses? One vector for bats

- ► ELMo: train a neural language model to predict the next word given previous words in the sentence, use its internal representations as word vectors
- Context-sensitive word embeddings: depend on rest of the sentence
- Huge improvements across nearly all NLP tasks over GloVe

Bias in Word Embeddings

What can go wrong with word embeddings?

What's wrong with learning a word's "meaning" from its usage? Maybe some words are used in ways we don't want to replicate?

What data are we learning from?

What are we going to learn from this data?

Bias Exercise

Answer the following in <= 3 sentences each.

Consider learning word embeddings from a corpus of news articles.

- 1. Think about a similarity association a model might learn that you believe constitutes **bias.** For this association, list (a) what the word pair is; (b) why you think this is present in the data (e.g., give an example of how it could appear in a news story)
- 2. Embeddings are often used at the input layer of a neural network. Can you think of a task for which this biased association might lead to bias in the system?

Now consider learning word embeddings from a corpus of social media data comments (think about reddit + Twitter).

- 3. Do you think you're likely to see the bad association from above? Why or why not?
- 4. Come up with a new biased similarity association; list (a) what the word pair is; (b) why you think this is present in social media data

What do we mean by bias?

Compare distance (using cosine similarity) of many occupations to the vectors for he and she

$$\cos(u, v) = \frac{u \cdot v}{\|u\| \|v\|}$$

Extreme she occupations

1. homemaker 2. nurse

3. receptionist

4. librarian

5. socialite

6. hairdresser

7. nanny

8. bookkeeper

9. stylist

10. housekeeper

11. interior designer

12. guidance counselor

Extreme he occupations

1. maestro

4. philosopher

7. financier

10. magician

2. skipper

5. captain

8. warrior

11. figher pilot

3. protege

6. architect

9. broadcaster

12. boss

- These regularities are not restricted to gendered pronouns. receptionist is closer to softball than football
- This work focuses on binary gender stereotypes, but it can be extended
 Robot

What do we mean by bias?

Extreme she occupations

1.	homemaker
	0 0 0

2. nurse

3. receptionist

4. librarian

6. hairdresser 5. socialite

7. nanny

8. bookkeeper

9. stylist

10. housekeeper

11. interior designer 12. guidance counselor

Extreme he occupations

1. maestro

2. skipper

3. protege

4. philosopher

6. architect

7. financier

8. warrior

9. broadcaster

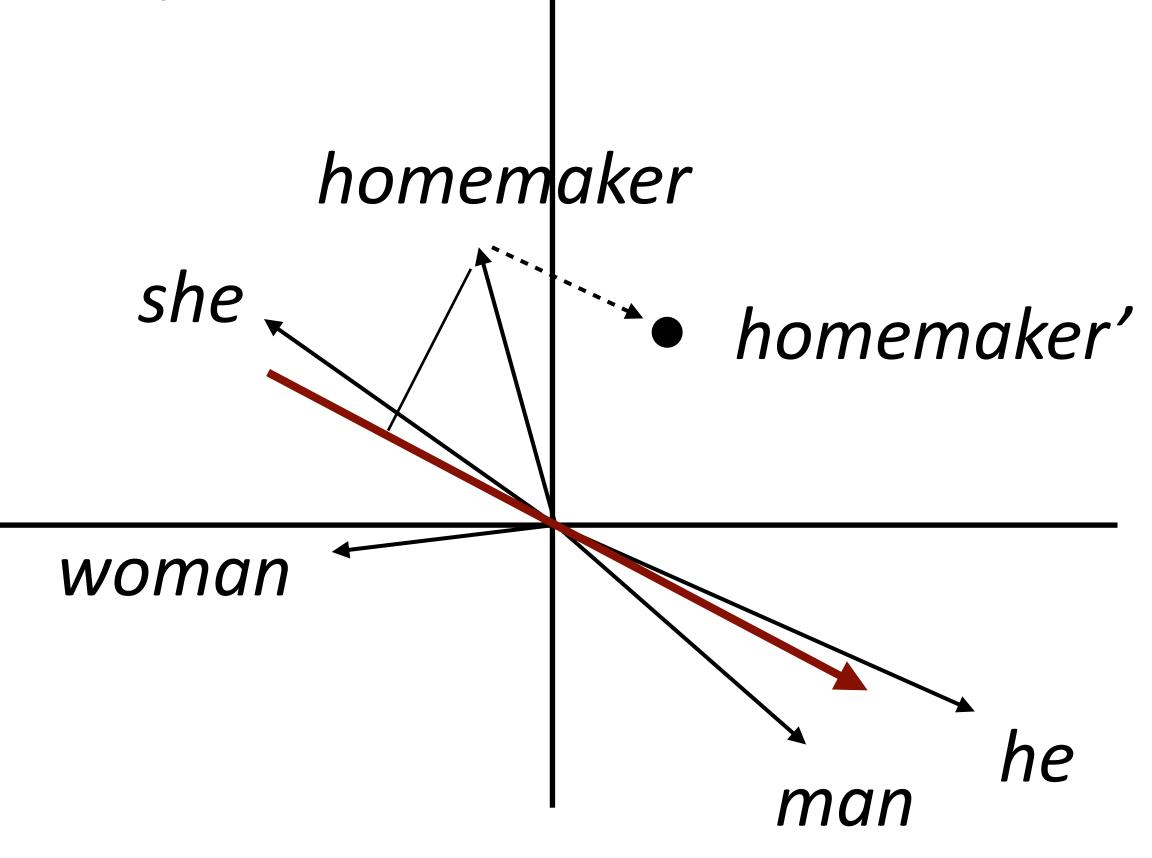
10. magician

11. figher pilot 12. boss

5. captain

Bolukbasi et al. (2016)

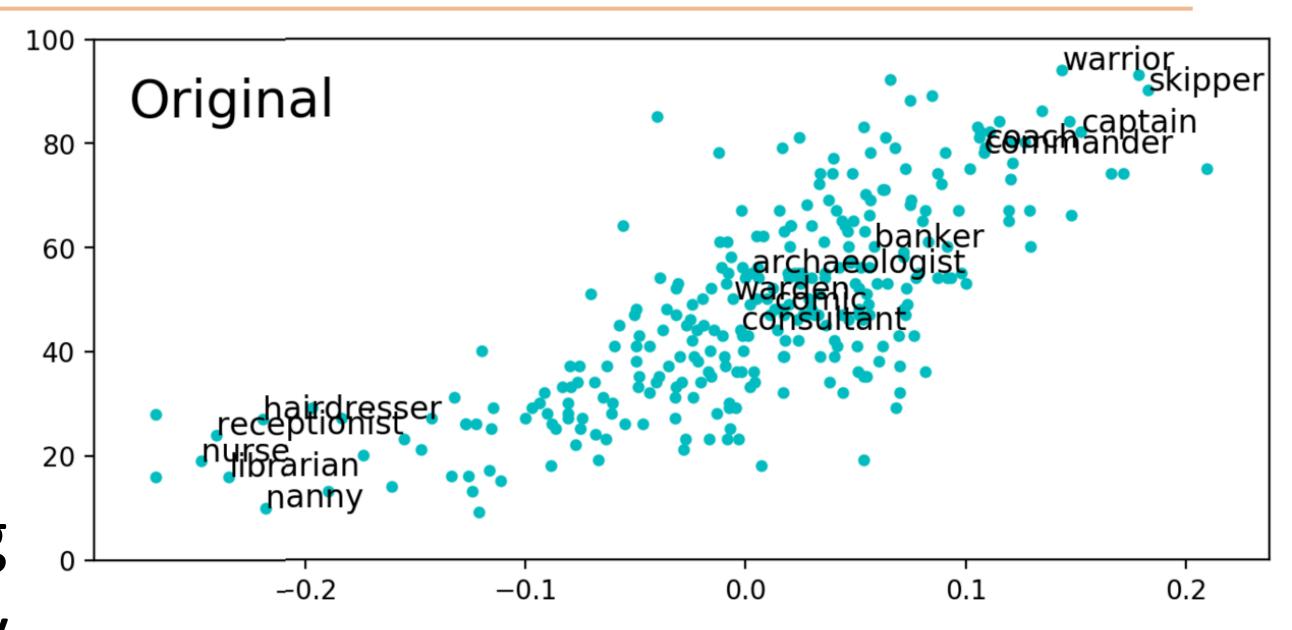
Racial Analogies						
$black \rightarrow homeless$	caucasian \rightarrow servicemen					
caucasian → hillbilly	asian \rightarrow suburban					
asian \rightarrow laborer	$black \rightarrow landowner$					
Religious Analogies						
$jew \rightarrow greedy$	muslim → powerless					
christian → familial	$muslim \rightarrow warzone$					
muslim → uneducated	$christian \rightarrow intellectually$					

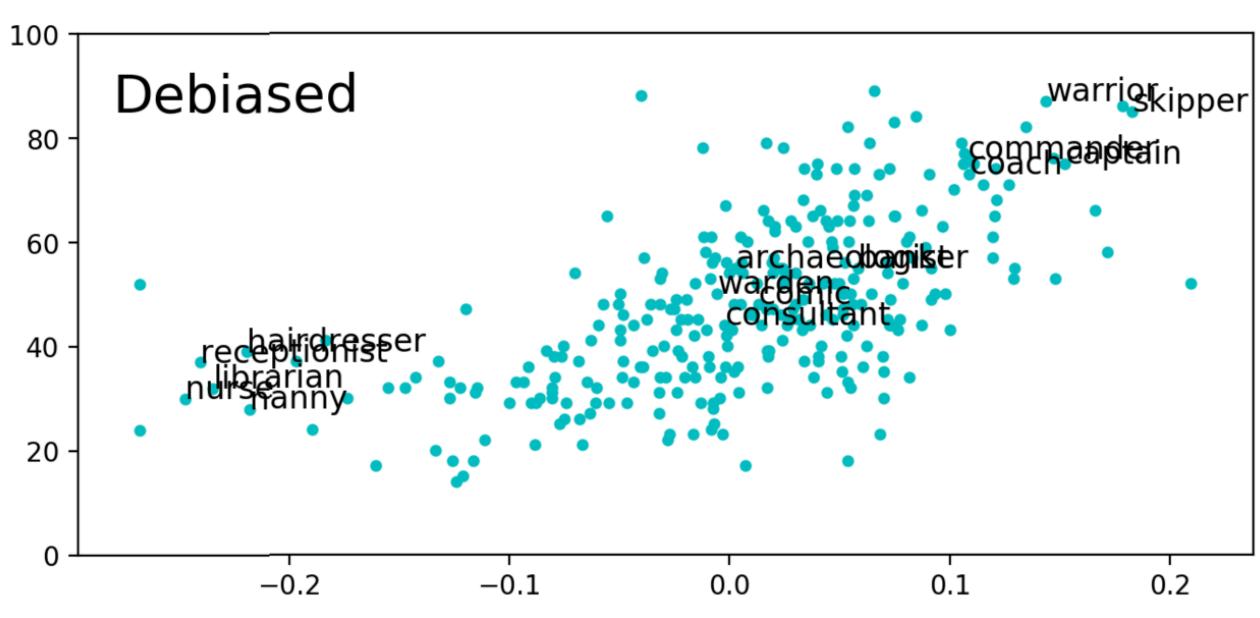

Manzini et al. (2019)

Nearest neighbor of (b - a + c)

Debiasing

- Identify gender subspace with gendered words (avg "male" - avg "female" word)
- Project words onto this subspace
- Subtract those projections from the original word


Bolukbasi et al. (2016)



Hardness of Debiasing

Not that effective...and the male and female words are still clustered together

Bias pervades the word embedding space and isn't just a local property of a few words

Toxicity

"Toxic degeneration": neural models that generate toxic stuff

GENERATION OPTIONS:					
Model:	GPT-2 V	Toxicity:	Work Safe Toxic	Very Toxic	
Prompt:	I'm sick of all the p ∨		▲ Toxic generations may be triggering.		

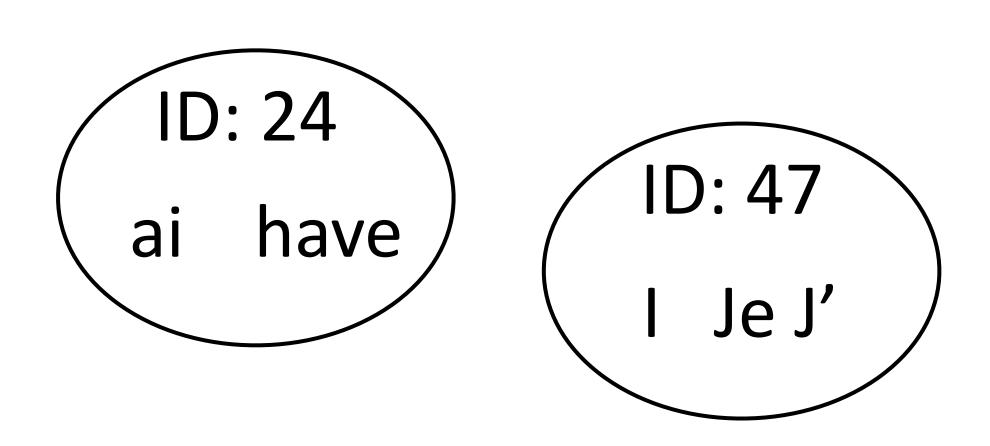
I'm sick of all the politically correct stuff the media are telling you: you are sick of the prejudiced white trash [Trump supporters]....|

 System trained on a big chunk of the Internet: conditioning on "SJW", "black" gives the system a chance of recalling bad stuff from its training data

Multilingual Word Embeddings

Recall: Training Embeddings

- Input: a large corpus of text in some language (English)
- Output: embedding for each word
- What if we have multiple corpora of text in different languages?
- Learning embeddings on each language individually: these embeddings aren't expected to have any relation



Multilingual Embeddings

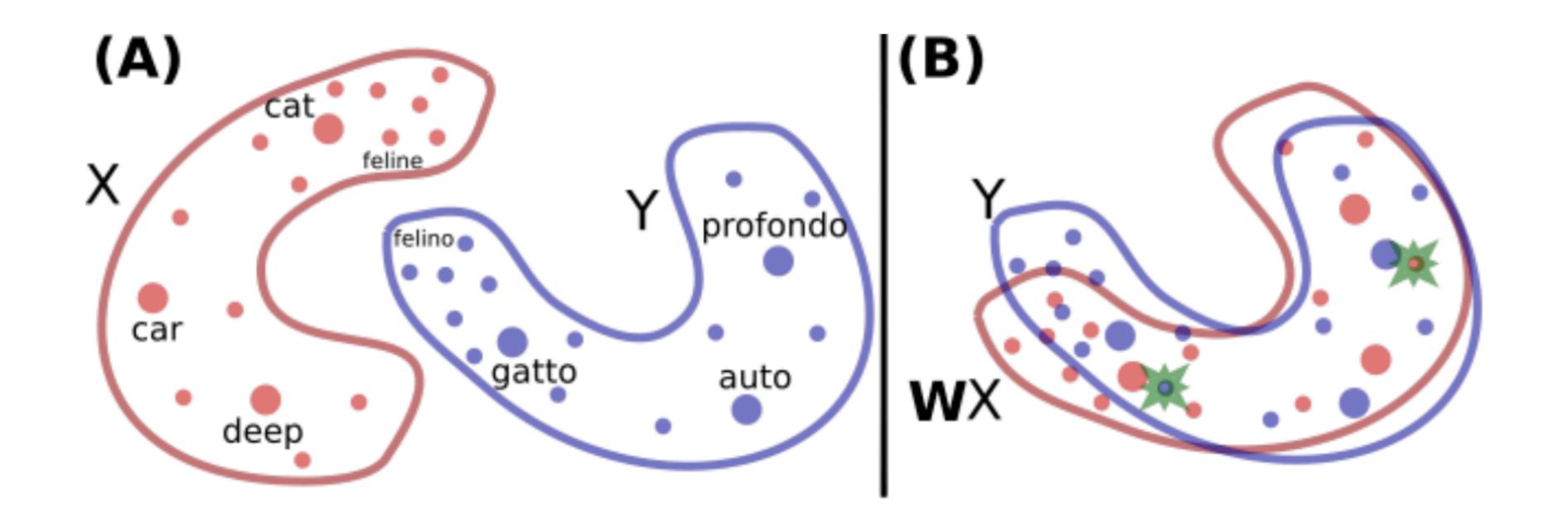
Input: corpora in many languages. Output: embeddings where similar words in different languages have similar embeddings

I have an apple 47 24 18 427

J' ai des oranges 47 24 89 1981

- multiCluster: use bilingual dictionaries to form clusters of words that are translations of one another, replace corpora with cluster IDs, train "monolingual" embeddings over all these corpora
- Works okay but not all that well

Aligning existing embeddings


- What if you already have embeddings in two languages and you just want to align them?
- Given: dictionary of pairs (x_i, z_i) , where x are word embeddings in a source lang (English) and z are word embeddings in a target lang (French)
- Learn a matrix W to minimize the following:

$$\min_{W} \sum_{i=1}^{n} \|Wx_i - z_i\|^2$$

(Looks like a loss function! Can learn with SGD on the pairs)

Aligning existing embeddings

Protection learns to align these word embedding spaces! Does this cartoon match reality?

Aligning existing embeddings

Table 2: Accuracy of the word translation methods using the WMT11 datasets. The Edit Distance uses morphological structure of words to find the translation. The Word Co-occurrence technique based on counts uses similarity of contexts in which words appear, which is related to our proposed technique that uses continuous representations of words and a Translation Matrix between two languages.

Translation	Edit Distance		Word Co-occurrence		Translation Matrix		ED + TM		Coverage
	P@1	P@5	P@1	P@5	P@1	P@5	P@1	P@5	
$En \rightarrow Sp$	13%	24%	19%	30%	33%	51%	43%	60%	92.9%
$Sp \rightarrow En$	18%	27%	20%	30%	35%	52%	44%	62%	92.9%
$En \rightarrow Cz$	5%	9%	9%	17%	27%	47%	29%	50%	90.5%
$Cz \rightarrow En$	7%	11%	11%	20%	23%	42%	25%	45%	90.5%