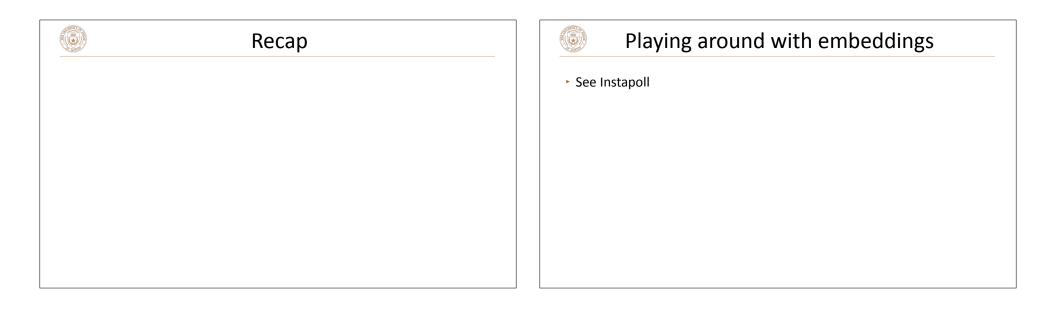
CS378: Natural Language Processing Lecture 8: Bias in Embeddings, Multilingual Embeddings



Using Word Embeddings

- Approach 1: learn embeddings as parameters from your data
 - Often works pretty well
- Approach 2: initialize using GloVe, keep fixed
 - Faster because no need to update these parameters
- Approach 3: initialize using GloVe, fine-tune
 - Works best for some tasks

Beyond Word Embeddings

fastText: Sub-word Embeddings

Same as SGNS, but break words down into n-grams with n = 3 to 6

where:

3-grams: <wh, whe, her, ere, re>

4-grams: <whe, wher, here, ere>,

5-grams: <wher, where, here>,

6-grams: <where, where>

Replace $w \cdot c$ in skip-gram computation with

 $\sum w_g \cdot c$

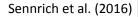
Bojanowski et al. (2017)

Preview: Subword Tokenization

- Words are a difficult unit to work with, word vocabularies get very large
- Character-level models don't work well
- Compromise solution: use thousands of "word pieces" (which may be full words but may also be parts of words)

Input: _the _eco tax _port i co _in _Po nt - de - Bu is ...

 Rare words (ecotax, portico, Pont-de-Buis) all get broken up into smaller units we can embed

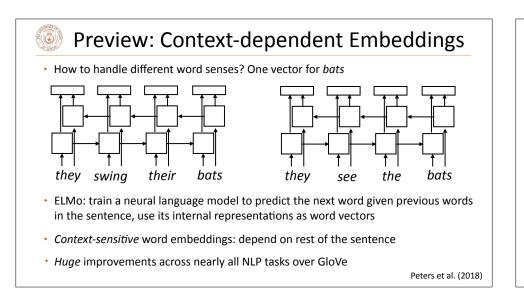


۲	Preview: Subword Tokenization								
(a)	Original: furiously Original: tricycles BPE: _fur iously (b) BPE: _t ric y cles Unigram LM: _fur ious ly Unigram LM: _tri cycle s								
(c)	Original: Completely preposterous suggestions BPE: _Comple t ely _prep ost erous _suggest ions Unigram LM: _Complete ly _pre post er ous _suggestion s								
•	te-pair encoding (BPE) produces less linguistically plausible units an another technique based on a unigram language model								
	Bostrom and Durrett (2020)								

Sentence Embeddings

What if we want embedding representations for whole sentences?

- Skip-thought vectors (Kiros et al., 2015), similar to skip-gram generalized to a sentence level (more later)
- Is there a way we can compose vectors to make sentence representations? Summing?
- Will return to this in a few weeks as we move on to syntax and semantics





What can go wrong with word embeddings?

- What's wrong with learning a word's "meaning" from its usage? Maybe some words are used in ways we don't want to replicate?
- What data are we learning from?

۲

What are we going to learn from this data?

Bias Exercise

Answer the following in <=3 sentences each.

Consider learning word embeddings from a corpus of news articles.

1. Think about a similarity association a model might learn that you believe constitutes bias. For this association, list (a) what the word pair is; (b) why you think this is present in the data (e.g., give an example of how it could appear in a news story)

2. Embeddings are often used at the input layer of a neural network. Can you think of a task for which this biased association might lead to bias in the system?

Now consider learning word embeddings from a corpus of social media data comments (think about reddit + Twitter).

3. Do you think you're likely to see the bad association from above? Why or why not?

4. Come up with a new biased similarity association; list (a) what the word pair is; (b) why you think this is present in social media data

What do we mean by bias?

- Compare distance (using Extreme she occupations 1. homemaker 2 nurse cosine similarity) of many 4. librarian 5. socialite 7. nanny 8. bookkeeper occupations to the vectors 10. housekeeper 11. interior designer 12. guidance counselor for he and she Extreme he occupations 2. skipper 1. maestro 4. philosopher 5. captain $\cos(u,v) = \frac{u \cdot v}{\|u\| \|v\|}$ 7. financier 8. warrior 11. figher pilot 10. magician These regularities are not restricted to gendered pronouns.
- receptionist is closer to softball than football
- This work focuses on binary gender stereotypes, but it can be extended Bolukbasi et al. (2016)

3. receptionist

6. hairdresser

9. stylist

3. protege

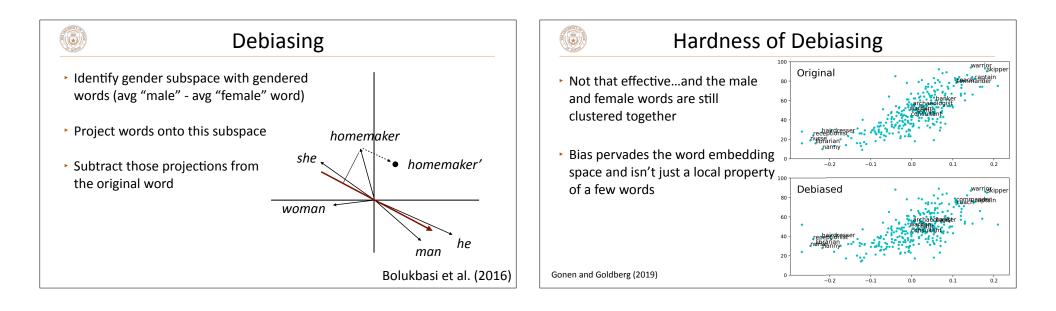
12. boss

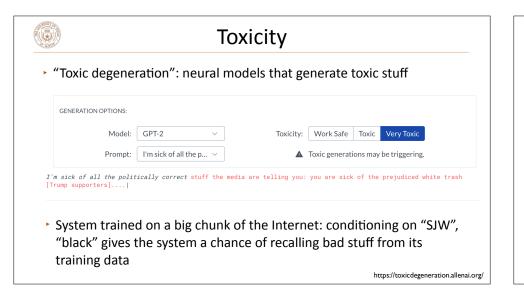
6. architect

9. broadcaster

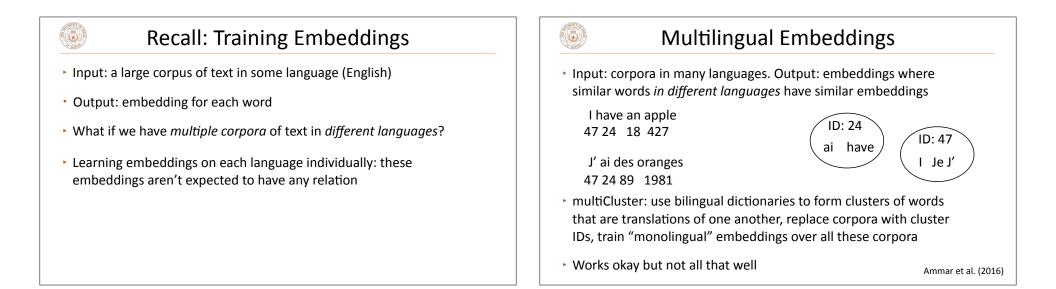
What do we mean by bias?

	Extreme she occup	ations				
1. homemaker	2. nurse	3. receptionist	Racial Analogies			
4. librarian	5. socialite	6. hairdresser	$black \rightarrow homeless$	caucasian \rightarrow servicemen		
7. nanny	8. bookkeeper	stylist	caucasian \rightarrow hillbilly	asian \rightarrow suburban		
$10.\ housekeeper$	11. interior designer	12. guidance counselor	asian \rightarrow laborer	$black \rightarrow landowner$		
	Extreme <i>he</i> occupation	ations	Religious Analogies			
1. maestro	2. skipper	3. protege	$jew \rightarrow greedy$	muslim \rightarrow powerless		
4. philosopher	5. captain	6. architect	christian \rightarrow familial	$muslim \rightarrow warzone$		
7. financier	8. warrior	9. broadcaster	muslim \rightarrow uneducated	christian \rightarrow intellectually		
10. magician	11. figher pilot	12. boss				
Bol	ukbasi et al. (20)16)	Manzini et al. (2019)			
			Nearest neighbor of (b - a + c)			





Multilingual Word Embeddings



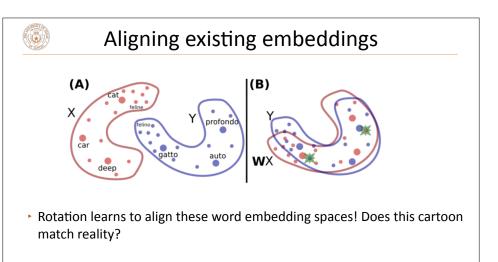
Aligning existing embeddings

- What if you already have embeddings in two languages and you just want to align them?
- Given: dictionary of pairs (x_i, z_i), where x are word embeddings in a source lang (English) and z are word embeddings in a target lang (French)
- Learn a matrix *W* to minimize the following:

$$\min_{W} \sum_{i=1}^{n} \|Wx_i - z_i\|^2$$

(Looks like a loss function! Can learn with SGD on the pairs)

Mikolov et al. (2013)



Aligning existing embeddings

Table 2: Accuracy of the word translation methods using the WMT11 datasets. The Edit Distance uses morphological structure of words to find the translation. The Word Co-occurrence technique based on counts uses similarity of contexts in which words appear, which is related to our proposed technique that uses continuous representations of words and a Translation Matrix between two languages.

Translation	Edit Distance		Word Co-occurrence		Translation Matrix		ED + TM		Coverage
	P@1	P@5	P@1	P@5	P@1	P@5	P@1	P@5	
$En \to Sp$	13%	24%	19%	30%	33%	51%	43%	60%	92.9%
$Sp \rightarrow En$	18%	27%	20%	30%	35%	52%	44%	62%	92.9%
$En \rightarrow Cz$	5%	9%	9%	17%	27%	47%	29%	50%	90.5%
$Cz \rightarrow En$	7%	11%	11%	20%	23%	42%	25%	45%	90.5%

Mikolov et al. (2013)