that NLP is totally transformed with ChatGPT and attention is all you need but ChatGPT isn't always right but maybe scaling it up and better reward models and RLHF can fix it but maybe it's fundamentally limited by the quality of text that it's trained on and AI-generated text is going to destroy that but maybe we can watermark the outputs and then not train on model outputs themselves
Administrivia

- Lecture: Tuesdays and Thursdays 9:30am-10:45am in JGB 2.218
  - Recordings available afterwards on LecturesOnline

- Course website (including syllabus):

- Ed Discussion board: link on Canvas

- Office hours: see course website. Greg’s are hybrid, first one today at 5pm

- TAs: Manya Wadhwa and Jenn Mickel

- Office hours start today, and I will stay around after this class if you have questions
Course Requirements

- CS 429

- Recommended: CS 331, familiarity with probability and linear algebra, programming experience in Python

- Helpful: Exposure to AI and machine learning (e.g., CS 342/343/363)

- Assignment 0 is out now (optional):
  - If this seems like it’ll be challenging for you, come and talk to me (this is smaller-scale than the other assignments, which are smaller-scale than the final project)
Lectures will build in time for discussion, in-class exercises, and questions. Additional material is available as videos to watch either before or after lectures.

- Format: in-person to encourage discussion, but all materials are available asynchronously afterwards.

- Equipment: useful to have a device for lecture to do Instapolls. For homework:
  - Lab machines available via SSH
  - A GPU is **not** required to complete the assignments! Having a GPU, GCP credits, or Google Colab access will be helpful for the final project though.
What’s the goal of NLP?

› Be able to solve problems that require deep understanding of text
› Example: dialogue systems

Siri, what’s your favorite kind of movie?

I like superhero movies!

What’s come out recently?

Dr. Strange in the Multiverse of Madness
The Political Bureau of the CPC Central Committee held a meeting on July 30 to analyze and study the current economic situation and plan economic work in the second half of the year.

People’s Daily, August 10, 2020
Question Answering

When was Abraham Lincoln born?

<table>
<thead>
<tr>
<th>Name</th>
<th>Birthday</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lincoln, Abraham</td>
<td>2/12/1809</td>
</tr>
<tr>
<td>Washington, George</td>
<td>2/22/1732</td>
</tr>
<tr>
<td>Adams, John</td>
<td>10/30/1735</td>
</tr>
</tbody>
</table>

February 12, 1809

How many visitor centers are there in Rocky Mountain National Park?

The park has a total of five visitor centers.
Generalist Systems?

Translate "中共中央政治局7月30日召开会议，会议分析研究当前经济形势，部署下半年经济工作。" into English.

The translation of "中共中央政治局7月30日召开会议，会议分析研究当前经济形势，部署下半年经济工作。" is "The Central Politburo of the Communist Party of China held a meeting on July 30, the meeting analyzed and studied the current economic situation, and部署下半年经济工作。"

What is 373 * 121?

The product of 373 multiplied by 121 is 45,113.

When was Abraham Lincoln's birthday?

Abraham Lincoln was born on February 12, 1809.

Still useful to think about capabilities along different tasks/domains.
Classical NLP Analysis Pipeline

Text

- Syntactic parses
- Coreference resolution
- Entity disambiguation
- Discourse analysis

Applications

- Summarize
- Extract information
- Answer questions
- Identify sentiment
- Translate

» NLP is about building these pieces! (largely using statistical approaches)

» Lots of this is done end-to-end with neural nets. But analysis is still useful...
How do we represent language?

Text

Labels

the movie was good +

Beyoncé had one of the best videos of all time subjective

Sequences /tags

PERSON
Tom Cruise stars in the new Mission Impossible film

WORK_OF_ART

Trees

NP

S

VP

NP

PP

λx. flight(x) ∧ dest(x)=Miami

flights to Miami

I eat cake with icing

NP

VBZ

NN

Question: What ambiguities do these representations need to help us resolve?
Why is language hard?
(and how can we handle that?)
Language is Ambiguous!

- Hector Levesque (2011): “Winograd schema challenge” (named after Terry Winograd, the creator of SHRDLU)
  
  The city council refused the demonstrators a permit because they advocated violence.
  The city council refused the demonstrators a permit because they feared violence.
  The city council refused the demonstrators a permit because they ______ violence.

- >5 datasets in the last few years examining this problem and commonsense reasoning

- Referential ambiguity
Language is Ambiguous!

Teacher Strikes Idle Kids

Ban on Nude Dancing on Governor’s Desk

Iraqi Head Seeks Arms

- Syntactic and semantic ambiguities: parsing needed to resolve these, but need context to figure out which parse is correct

example credit: Dan Klein
Language is **Really** Ambiguous!

- There aren’t just one or two possibilities which are resolved pragmatically

  - *il fait vraiment beau*
    - It is really nice out
    - It’s really nice
    - The weather is beautiful
    - It is really beautiful outside
    - He makes truly beautiful
    - It fact actually handsome

- Combinatorially many possibilities, many you won’t even register as ambiguities, but systems still have to resolve them
What techniques do we use?
(to combine data, knowledge, linguistics, etc.)
A brief history of (modern) NLP

1980
- Largely rule-based, expert systems
- Earliest stat MT work at IBM

1990
- Penn treebank
- S
- NP → VP
- Ratnaparkhi tagger
- NNP VBZ

2000
- Collins vs. Charniak parsers
- Unsup: topic models, grammar induction
- Sup: SVMs, CRFs, NER, Sentiment
- Semi-sup, structured prediction

2010

2020
- Pretraining

- Neural
Pretraining

- Language modeling: predict the next word in a text $P(w_i|w_1, \ldots, w_{i-1})$

$P(w \mid \text{I want to go to}) = 0.01$ Hawai’i

- $P(w \mid \text{the acting was horrible, I think the movie was}) = 0.1$ bad

- Model understands some sentiment?

- Train a neural network to do language modeling on massive unlabeled text, fine-tune it to do {tagging, sentiment, question answering, …}

Peters et al. (2018), Devlin et al. (2019)
Key parts which we will study: (1) Transformer architecture; (2) what data is used (both for pre-training and fine-tuning)

Devlin et al. (2019)
GPT and In-Context Learning

- Even more “extreme” setting: no gradient updates to model, instead large language models “learn” from examples in their context
- Many papers studying why this works. We will read some!

**Few-shot**

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

1. Translate English to French:
2. sea otter => loutre de mer
3. peppermint => menthe poivrée
4. plush giraffe => girafe peluche
5. cheese => ........................................

Brown et al. (2020)
Many of the ideas that are big in 2023 only make sense and only work because the models are so big!

Kaplan et al. (2020), Jason Wei et al. (2022)
Where are we?

- We have very powerful neural models that can fit lots of datasets

- Data: we need data that is not just correctly labeled, but reflects what we actually want to be able to do

- Users: systems are not useful unless they do something we want

- Language/outreach: who are we building this for? What languages/dialects do they speak?
Social Impact

- NLP systems are increasingly used in the world

...and increasingly we have to reckon with their impact

- This lecture: let’s warm up by thinking about these issues a bit
Social Impact

• Rate your awareness of the social impact of NLP, AI, and machine learning from 1 to 5, where 1 is little awareness and 5 is strong awareness (5 = you feel like you could write a blog post about a current issue).

• Describe one scenario where you think deployment of an NLP system might pose ethical challenges due to the application itself (i.e., using NLP to do “bad stuff”).

• Describe one scenario where you think deployment of an NLP system might pose ethical challenges due to unintended consequences (e.g., unfairness, indirectly causing bad things to happen, etc.).
Outline of the Course

- Classification: linear and neural, word representations (3.5 weeks)
- Language modeling, Transformers, pre-training (2.5 weeks)
- Tagging, parsing, and linguistic structure (2 weeks, ending in midterm)
- Modern pre-trained models, ChatGPT, etc. (2.5 weeks)
- Applications and miscellaneous (2.5 weeks)

Goals:
- Cover fundamental techniques used in NLP
- Understand how to look at language data and approach linguistic phenomena
- Cover modern NLP problems encountered in the literature: what are the active research topics in 2023?
Coursework

- Five assignments, worth 40% of grade
  - Mix of writing and implementation;
  - Assignment 0 is out now, optional diagnostic
  - ~2 weeks per assignment except for A4
  - 5 “slip days” throughout the semester to turn in assignments 24 hours late
  - Submission on Gradescope

These assignments require understanding the concepts, writing performant code, and thinking about how to debug complex systems. They are challenging; start early!

Office hours: please come! However, the course staff are not here to debug your code! We will help you understand the concepts and come up with debugging strategies!
Coursework

- Midterm (25% of grade), take-home
  - Similar to written homework problems

- Final project (25% of grade)
  - Groups of 1 or 2
  - Standard project: understanding dataset biases
  - Independent projects are possible: these must be proposed earlier (to get you thinking early) and will be held to a high standard!

- Social Impact Responses, UT Instapoll (10% of the grade)
  - These will be done online and can be done during or after class
Academic Honesty

› You may work in groups, but your final writeup and code **must be your own**

› Don’t share code with others!
A climate conducive to learning and creating knowledge is the right of every person in our community. Bias, harassment and discrimination of any sort have no place here.
Survey

‣ See Instapoll (you can answer later as well)