
CS371N:	Natural	Language	Processing

Lecture	12:	Pre-training,	BERT

Greg	Durret

Announcements
‣ A3	due	in	one	week

‣ Midterm	in	3	weeks

Recap:	Transformers

dmodel

dk dk dv

dv	->	dmodel

dmodel

dinternal

dmodel

Query	Q	=	EWQ Keys	K	=	EWKValues	V	=	EWV

Position	encoding:	E	=	E	+	enc(index)

Today

‣ ELMo

‣ BERT

‣ BERT	results

‣ Transformer	Language	Modeling

‣ Subword	tokenization	(if	time)

Transformer	Language	Modeling

What	do	Transformers	produce?

‣ Encoding	of	each	word	—	can	pass	this	to	another	layer	to	make	a	
prediction	(like	predicting	the	next	word	for	language	modeling)

the		movie		was			great

‣ Like	RNNs,	Transformers	can	be	viewed	as	a	transformation	of	a	
sequence	of	vectors	into	a	sequence	of	context-dependent	vectors

Transformer	Language	Modeling

I							saw				the				dog

hi

P (w|context) = softmax(Whi)

‣ W	is	a	(vocab	size)	x	(hidden	size)	matrix;	linear	layer	in	PyTorch	(rows	
are	word	embeddings)

word	probs

Training	Transformer	LMs

<s>							I							saw				the				dog

‣ Input	is	a	sequence	of	words,	output	is	those	words	shifted	by	one,

I							saw				the				dog		running

‣ Allows	us	to	train	on	predictions	across	several	timesteps	simultaneously	
(similar	to	batching	but	this	is	NOT	what	we	refer	to	as	batching)

Training	Transformer	LMs

I							saw				the				dog

Total	loss	=	sum	of	negative	log	
likelihoods	at	each	position

P(w|context)

loss	=	—	log	P(w*|context)

loss_fcn	=	nn.NLLLoss()

loss	+=	loss_fcn(log_probs,	ex.output_tensor)

[seq	len,	num	output	classes] [seq	len]

‣ Batching	is	a	little	tricky	with	NLLLoss:	need	to	collase	[batch,	seq	len,	num	
classes]	to	[batch	*	seq	len,	num	classes].	You	do	not	need	to	batch

Batched	LM	Training
I	saw	the	dog	running	in	the	park	and	it	looked	very	excited	to	be	there

<s>							I							saw				the				dog

I							saw				the				dog		running

<s>						in						the				park			and

in						the				park			and					it
batch	dim

‣ Multiple	sequences	and	multiple	
timesteps	per	sequence

looked	very	excited	to	be

A	Small	Problem	with	Transformer	LMs

<s>							I							saw				the				dog

‣ With	standard	self-attention:	“I”	attends	to	“saw”	and	the	model	is	
“cheating”.	How	do	we	ensure	that	this	doesn’t	happen?

I							saw				the				dog		running

‣ This	Transformer	LM	as	we’ve	described	it	will	easily	achieve	perfect	
accuracy.	Why?

Attention	Masking

<s>							
I							
saw				
the				
dog

‣ We	want	to	prohibit

‣ We	want	to	mask	out	everything	in	red	(an	upper	triangular	matrix)

<s>							I							saw				the				dog

Query	words

Key	words

Implementing	in	PyTorch

‣ nn.TransformerEncoder	can	be	built	out	of	nn.TransformerEncoderLayers,	
can	accept	an	input	and	a	mask	for	language	modeling:

‣You	cannot	use	these	for	Part	1,	only	for	Part	2

#	Inside	the	module;	need	to	fill	in	size	parameters

layers	=	nn.TransformerEncoderLayer([...])

transformer_encoder	=	nn.TransformerEncoder(encoder_layers,	num_layers=[...])

[.	.	.]

#	Inside	forward():	puts	negative	infinities	in	the	red	part

mask	=	torch.triu(torch.ones(len,	len)	*	float('-inf'),	diagonal=1)

output	=	transformer_encoder(input,	mask=mask)

LM	Evaluation

‣ Accuracy	doesn’t	make	sense	—	predicting	the	next	word	is	generally	
impossible	so	accuracy	values	would	be	very	low

‣ Evaluate	LMs	on	the	likelihood	of	held-out	data	(averaged	to	
normalize	for	length)

1

n

nX

i=1

logP (wi|w1, . . . , wi�1)

‣ Perplexity:	exp(average	negative	log	likelihood).	Lower	is	better
‣ Suppose	we	have	probs	1/4,	1/3,	1/4,	1/3	for	4	predictions
‣ Avg	NLL	(base	e)	=	1.242					Perplexity	=	3.464	<==	geometric	mean	of 
																																																																																									denominators

Scaling	Laws

Kaplan	et	al.	(2020)‣ Transformers	scale	really	well!

Takeaways

‣ Transformers	are	going	to	be	the	foundation	for	the	much	of	the	rest	
of	this	class	and	are	a	ubiquitous	architecture	nowadays

‣ Many	details	to	get	right,	many	ways	to	tweak	and	extend	them,	but	
core	idea	is	the	multi-head	self	attention	and	their	ability	to	
contextualize	items	in	sequences

Pretraining	Intro,	ELMo

What	is	pre-training?

‣ “Pre-train”	a	model	on	a	large	dataset	for	task	X,	then	“fine-tune”	it	on	a	
dataset	for	task	Y

‣ Key	idea:	X	is	somewhat	related	to	Y,	so	a	model	that	can	do	X	will	have	
some	good	neural	representations	for	Y	as	well

‣ GloVe	can	be	seen	as	pre-training:	learn	vectors	with	the	skip-gram	
objective	on	large	data	(task	X),	then	fine-tune	them	as	part	of	a	neural	
network	for	sentiment/any	other	task	(task	Y)

‣ ImageNet	pre-training	is	huge	in	computer	vision:	learn	generic	visual	
features	for	recognizing	objects

GloVe	is	insufficient
‣ GloVe	uses	a	lot	of	data	but	in	a	weak	way

‣ Having	a	single	embedding	for	each	word	is	wrong

‣ Identifying	discrete	word	senses	is	hard,	doesn’t	scale.	Hard	to	identify	
how	many	senses	each	word	has

they	see	the	batsthey	swing	the	bats

‣ How	can	we	make	our	word	embeddings	more	context-dependent?

ELMo
‣ CNN	over	each	word	=>	RNN

they													swing																the																	bats
Char	CNN Char	CNN Char	CNN Char	CNN

4096-dim	LSTMs

next	word

2048	CNN	filters	projected	down	to	512-dim

Peters	et	al.	(2018)

Representation	of	visited 
(plus	vectors	from	another	
LM	running	backwards)

‣ Huge	gains	across	many	high-profile	tasks:	NER,	question	answering,	
semantic	role	labeling	(similar	to	parsing),	etc.

‣ Use	the	embeddings	as	a	drop-in	replacement	for	GloVe

‣ But	what	if	the	pre-training	isn’t	only	the	embeddings?

ELMo

BERT

BERT

‣ Four	major	changes	compared	to	ELMo:

‣ Transformers	instead	of	LSTMs

‣ Bidirectional	model	with	“Masked	LM”	objective	instead	of	standard	LM

‣ Fine-tune	instead	of	freeze	at	test	time

‣ Operates	over	word	pieces	(byte	pair	encoding)

‣ AI2	made	ELMo	in	spring	2018,	GPT	(transformer-based	ELMo)	was	
released	in	summer	2018,	BERT	came	out	October	2018

BERT

Devlin	et	al.	(2019)

‣ ELMo	is	a	unidirectional	model	(as	is	GPT):	we	can	concatenate	two	
unidirectional	models,	but	is	this	the	right	thing	to	do?

A	stunning	ballet	dancer,	Copeland	is	one	of	the	best	performers	to	see	live.

ELMo

ELMo“performer”

“ballet	dancer”

BERT

“ballet	dancer/performer”

‣ ELMo	reprs	look	at	each	direction	in	isolation;	BERT	looks	at	them	jointly

BERT
‣ How	to	learn	a	“deeply	bidirectional”	model?	What	happens	if	we	just	
replace	an	LSTM	with	a	transformer?

John								visited	Madagascar	yesterday

visited Madag. yesterday …

‣ You	could	do	this	with	a	“one-
sided”	transformer,	but	this	“two-
sided”	model	can	cheat

John								visited	Madagascar	yesterday

ELMo	(Language	Modeling)
visited Madag. yesterday …

BERT

Masked	Language	Modeling
‣ How	to	prevent	cheating?	Next	word	prediction	fundamentally	doesn't	
work	for	bidirectional	models,	instead	do	masked	language	modeling

John								visited						[MASK]					yesterday

Madagascar
‣ BERT	formula:	take	a	chunk	of	
text,	mask	out	15%	of	the	
tokens,	and	try	to	predict	them

Devlin	et	al.	(2019)

Next	“Sentence”	Prediction
‣ Input:	[CLS]	Text	chunk	1	[SEP]	Text	chunk	2

[CLS]	John			visited				[MASK]			yesterday				and			really		[MASK]		it		[SEP]		I	[MASK]	Madonna.

Madagascar

Devlin	et	al.	(2019)

Transformer

Transformer

…

enjoyed likeNotNext

‣ BERT	objective:	masked	LM	+	next	sentence	prediction

‣ 50%	of	the	time,	take	the	true	next	chunk	of	text,	50%	of	the	time	take	a	
random	other	chunk.	Predict	whether	the	next	chunk	is	the	“true”	next

BERT	Architecture
‣ BERT	Base:	12	layers,	768-dim	
per	wordpiece	token,	12	heads.	
Total	params	=	110M

Devlin	et	al.	(2019)

‣ BERT	Large:	24	layers,	1024-dim	
per	wordpiece	token,	16	heads.	
Total	params	=	340M

‣ Positional	embeddings	and	
segment	embeddings,	30k	
word	pieces

‣ This	is	the	model	that	gets	
pre-trained	on	a	large	corpus

What	can	BERT	do?

Devlin	et	al.	(2019)

‣ Artificial	[CLS]	token	is	used	as	the	vector	to	do	classification	from

‣ BERT	can	also	do	tagging	by	predicting	tags	at	each	word	piece
‣ Sentence	pair	tasks	(entailment):	feed	both	sentences	into	BERT

Natural	Language	Inference

A	man	inspects	the	uniform	of	a	figure The	man	is	sleeping

An	older	and	younger	man	smiling
Two	men	are	smiling	and	
laughing	at	cats	playing

A	boy	plays	in	the	snow A	boy	is	outsideentails

contradicts

neutral

‣ Long	history	of	this	task:	“Recognizing	Textual	Entailment”	challenge	in	
2006	(Dagan,	Glickman,	Magnini)

‣ Early	datasets:	small	(hundreds	of	pairs),	very	ambitious	(lots	of	world	
knowledge,	temporal	reasoning,	etc.)

Premise Hypothesis

What	can	BERT	do?

‣ How	does	BERT	model	this	sentence	pair	stuff?

‣ Transformers	can	capture	interactions	between	the	two	sentences,	
even	though	the	NSP	objective	doesn’t	really	cause	this	to	happen

Transformer

Transformer

…

[CLS]	A	boy	plays	in	the	snow	[SEP]	A	boy	is	outside

Entails (first	sentence	implies	second	is	true)

SQuAD

Passage:	One	of	the	most	famous	people	born	in	Warsaw	was	Marie	Skłodowska-Curie,	
who	achieved	international	recognition	for	her	research	on	radioactivity	and	was	the	
first	female	recipient	of	the	Nobel	Prize.	Famous	musicians	include	Władysław	Szpilman	
and	Frédéric	Chopin.	Though	Chopin	was	born	in	the	village	of	Żelazowa	Wola,	about	60	
km	(37	mi)	from	Warsaw,	he	moved	to	the	city	with	his	family	when	he	was	seven	
months	old.	Casimir	Pulaski,	a	Polish	general	and	hero	of	the	American	Revolutionary	
War,	was	born	here	in	1745.

Q:	What	was	Marie	Curie	the	first	female	recipient	of?

‣ Assume	we	know	a	passage	that	contains	the	answer.	More	recent	work	has	shown	
how	to	retrieve	these	effectively	(will	discuss	when	we	get	to	QA)

Answer	=	Nobel	Prize

SQuAD

Passage:	One	of	the	most	famous	people	born	in	Warsaw	was	Marie	Skłodowska-Curie,	
who	achieved	international	recognition	for	her	research	on	radioactivity	and	was	the	
first	female	recipient	of	the	Nobel	Prize.	…

Q:	What	was	Marie	Curie	the	first	female	recipient	of?

‣ Predict	answer	as	a	pair	of	(start,	end)	indices	given	question	q	and	passage	p;	
compute	a	score	for	each	word	and	softmax	those

recipient	of	the	Nobel	Prize	.

0.01
P(start	|	q,	p)	=

0.010.01 0.85 0.01

P(end	|	q,	p)	=	same	computation	but	different	params

QA	with	BERT

Devlin	et	al.	(2019)

What	was	Marie	Curie	the	first	female	recipient	of	?	[SEP]	One	of	the	most	famous	people	born	in	Warsaw	was	Marie	…

What	can	BERT	NOT	do?

‣ BERT	cannot	generate	text	(at	least	not	in	an	obvious	way)

‣ Can	fill	in	MASK	tokens,	but	can’t	generate	left-to-right	(well,	you	
could	put	MASK	at	the	end	repeatedly,	but	this	is	slow)

‣ Masked	language	models	are	intended	to	be	used	primarily	for	
“analysis”	tasks

Fine-tuning	BERT
‣ Fine-tune	for	1-3	epochs,	batch	size	2-32,	learning	rate	2e-5	-	5e-5

‣ Large	changes	to	weights	up	here	
(particularly	in	last	layer	to	route	the	
right	information	to	[CLS])

‣ Smaller	changes	to	weights	lower	down	
in	the	transformer

‣ Small	LR	and	short	fine-tuning	schedule	
mean	weights	don’t	change	much

‣ Often	requires	tricky	learning	rate	
schedules	(“triangular”	learning	rates	
with	warmup	periods)

BERT	Results

Evaluation:	GLUE

Wang	et	al.	(2019)

Results

Devlin	et	al.	(2018)

‣ Huge	improvements	over	prior	work	(even	compared	to	ELMo)

‣ Effective	at	“sentence	pair”	tasks:	textual	entailment	(does	sentence	A	
imply	sentence	B),	paraphrase	detection

What	does	BERT	learn?

‣ Heads	on	transformers	learn	interesting	and	diverse	things:	content	
heads	(attend	based	on	content),	positional	heads	(based	on	
position),	etc.

Clark	et	al.	(2019)

What	does	BERT	learn?

Clark	et	al.	(2019)

‣ Still	way	worse	than	what	supervised	systems	can	do,	but	
interesting	that	this	is	learned	organically

Takeaways

‣ Pre-trained	models	and	BERT	are	very	powerful	for	a	range	of	NLP	tasks

‣ These	models	have	enabled	big	advances	in	NLI	and	QA	specifically

‣ They	build	on	our	Transformer	language	modeling	ideas,	with	modification	
(e.g.,	bidirectional	nature	of	BERT)

Subword	Tokenization

Handling	Rare	Words

‣ Words	are	a	difficult	unit	to	work	with.	Why?

‣ Character-level	models	were	explored	extensively	in	2016-2018	but	
simply	don’t	work	well	—	becomes	very	expensive	to	represent	
sequences

‣ When	you	have	100,000+	words,	the	final	matrix	multiply	and	softmax	
start	to	dominate	the	computation,	many	params,	still	some	words	you	
haven’t	seen,	doesn’t	take	advantage	of	morphology,	…

Subword	Tokenization

‣ Subword	tokenization:	wide	range	of	schemes	that	use	tokens	that	are	
between	characters	and	words	in	terms	of	granularity

Sennrich	et	al.	(2016)

_the	_eco	tax	_port	i	co	_in			_Po	nt	-	de	-	Bu	is	…

‣ These	“word	pieces”	may	be	full	words	or	parts	of	words

‣ _	indicates	the	word	piece	starting	a	word	(can	think	of	it	as	the	space	
character).	

Subword	Tokenization

‣ Subword	tokenization:	wide	range	of	schemes	that	use	tokens	that	are	
between	characters	and	words	in	terms	of	granularity

Sennrich	et	al.	(2016)

_the	_eco	tax	_port	i	co	_in			_Po	nt	-	de	-	Bu	is	…

Output:	_le	_port	ique	_éco	taxe	_de	_Pont	-	de	-	Bui	s

‣ These	“word	pieces”	may	be	full	words	or	parts	of	words

‣ Can	achieve	transliteration	with	this,	subword	structure	makes	some	
translations	easier	to	achieve

Byte	Pair	Encoding	(BPE)

‣ Start	with	every	individual	byte	(basically	character)	as	its	own	symbol

Sennrich	et	al.	(2016)

‣ Count	bigram	character	
cooccurrences

‣ Merge	the	most	frequent	pair	of	
adjacent	characters

‣ Doing	8k	merges	=>	vocabulary	of	around	8000	word	pieces.	Includes	
many	whole	words

‣ Most	SOTA	NMT	systems	use	this	on	both	source	+	target

Byte	Pair	Encoding	(BPE)

Bostrom	and	Durrett	(2020)

‣ BPE	produces	less	linguistically	plausible	units	than	another	technique	
based	on	a	unigram	language	model:	rather	than	greedily	merge,	find	
chunks	which	make	the	sequence	look	likely	under	a	unigram	LM

‣ Unigram	LM	tokenizer	leads	to	slightly	better	BERT

‣ What	do	you	see	here?

What’s	in	the	token	vocab? Tokenization	Today

‣ All	pre-trained	models	use	some	kind	of	subword	tokenization	with	a	
tuned	vocabulary;	usually	between	50k	and	250k	pieces	(larger	
number	of	pieces	for	multilingual	models)

‣ As	a	result,	classical	word	embeddings	like	GloVe	are	not	used.	All	
subword	representations	are	randomly	initialized	and	learned	in	the	
Transformer	models

