CS371N: Natural Language Processing
Lecture 17/: Parsing Il

Greg Durrett

The University of Texas at Austin



Announcements

> A4 due today
> Midterm Thursday:

> One 8.5”"x11"” notesheet

> No calculators

>~ Multiple choice, short-answer, and long-answer



Recap: PCFGs

Grammar (CFG) Lexicon
ROOT — S 1.0 NP —=NPPP 0.3 NN — interest 1.0
S —- NP VP 1.0 VP - VBP NP 0.7 NNS — raises 1.0
NP—-DTNN (2 VP—-VBPNPPP 0.3 VBP — interest 1.0
NP —-NNNNS ()5 PP — INNP 1.0 VBZ —raises 1.0

> Context-free grammar: symbols which rewrite as one or more symbols

> Lexicon consists of “preterminals” (POS tags) rewriting as terminals (words)

> CFGisatuple (N, TS, R): N=nonterminals, T = terminals, S = start
symbol (generally a special ROOT symbol), R = rules

> PCFG: probabilities associated with rewrites, normalize by source symbol



Recap: Learning PCFGs

S— NP VP 1.0
NP — PRP 0.5
—
NP — DT NN 0.5
e buﬂ'dmg > Maximum likelihood PCFG for a set of

labeled trees: count and normalize!
Same as HMMs / Naive Bayes



Recap: CKY

> Chart: T[i,j,X] = best score for X
over (i, j)

NP

Tli,j,X]

- Base: T[i,i+1,X] = log P(X — w;)

> Loop over all split points k,
apply rules X ->Y Z to build
X in every possible way Wi W, W3 Wa

T[i,j,X] = max max TI[ik,X1] + T[k,j,X2] + log P(X — X1 X2)
k r:X—X1X2

> Runtime: O(n3G) G = grammar constant



Parser Evaluation



Parser Evaluation

S
> View a parse as a set of labeled /\

brackets / constituents VP

NP
NP
5(0,3) | f \
P01} PRP VBD PRP

| She saw it
PRP(0,1) (but standard evaluation 0 1 2

does not count POS tags)
VP(1,3), VBD(1,2), NP(2,3), PRP(2,3)



Parser Evaluation

S S
/\ 5(013)1 \
NP NP(0,2), / VP
/\ N|P NP(2,3), |\||p NP
PRP(E;1); |
PRP- NN PBP NN{L2) PRP  VBD PRP
ohe saw it PR3} She saw it
0 1 2 3 0 1 5 3

> Precision: number of correct predictions / number of predictions =2/3
> Recall: number of correct predictions / number of golds =2/4

> F1: harmonic mean of precision and recall = (1/2 * ((2/4)-1 + (2/3)1))-1

= 0.57 (closer to min)



Results

>~ Standard dataset for English: Penn Treebank (Marcus et al., 1993)
~ “Vanilla” PCFG: ~71 F1
> Best PCFGs for English: ~¥90 F1

~ State-of-the-art discriminative models (using unlabeled data): 95 F1

> Other languages: results vary widely depending on annotation +
complexity of the grammar



Grammar Preprocessing



Binarization

> To parse efficiently, we need our PCFGs to be at most binary (not CNF)

VP
%\ P(VP — VBD NP PP PP) =
VBD P(VP — VBZ PP) =0.1
sold the book to her for S3
> Solution: transform the trees. Introduce VP
intermediate special symbols that T
rewrite deterministically vED /VP'[N\PPP PP]
P(VP — VBD VP-[NP PP PP]) =0.2 NP VP-[PP PP]
P(VP-[NP PP PP] — NP VP-[PP PP]) = 1.0 5 b

P(VP-[PP PP] —= PP PP) =



PCFG Independence Assumptions

All NPs NPs under S NPs under VP

21% 237
o

11%
’ 9% 9% 99,

. . 6%

NPPP DTNN PRP NP PP DTNN PRP NP PP DTNN PRP

7%

> Language is not context-free: NPs in different contexts rewrite differently

> [They]np received [the package of books]np



Vertical Markovization

S SMROOT
I\I|P /VP\ NPAS VPAS
PRP VBD PRP PRPANP VBDAVP PRPAVP
She saw it She saw it
Basic tree (v = 1) v = 2 Markovization

> Why is this a good idea?



Annotated Tree

ROOT
> Augment the grammar: |
C e L S"ROOT-v
deterministically /,’T...,\
transform symbols to “S  NP'S-B VP’S-VBE-v
be “less context free” | | e ‘ ‘
S “  DT-U'NP VBZBE'VP NP"VP-B !
(binarization not | | P
shown here) This is NN°NP NN"NP
panic ~ buying

>~ 75 F1 with basic PCFG => 86.3 F1 with this highly customized PCFG (SOTA
was 90 F1 at the time, but with more complex methods)

Klein and Manning (2003)



Dependency Parsing



Dependency Parsing

> Dependencies: syntactic structure is defined by relations between words
> Head (parent, governor) connected to dependent (child, modifier)

>~ Each word has exactly one parent except for the ROOT symbol,
dependencies must form a directed acyclic graph

7 N

DT NN VBD TO DT NN
the dog ran to the house

ROOT

» POS tags same as before, usually run a tagger first as preprocessing



Why are they defined this way?

» Constituency tests:

> Substitution by proform: the dog did so [ran to the house],
he [the dog] ran to the house

> Clefting (It was [to the house] that the dog ran...)

> Dependency: verb is the root of the clause, everything else follows
from that

> No notion of a VP!



Dependency Parsing

> Still a notion of hierarchy! Subtrees often align with constituents

VBD
ran
—
NN TO
dog to
DT <« " NN
the house



Dependency Parsing

>~ Can label dependencies according to syntactic function

> Major source of ambiguity is in the structure, so we focus on that more
(labeling separately with a classifier works pretty well)

pobj
det NSubj prep det
DT NN VBD TO DT NN

the dog ran to the house



= Dependency vs. Constituency: PP Attachment

> Constituency: several rule productions need to change

S
)
NNS
g
hr The r:hrfdren ate
The ch:ldren IN NP N\ /\
/\ DT NN
/ L \ /\
3"3 D" | with D|' N‘N the cake with DT NN
the cake a spoon ‘ ‘

a spoon



Dependency vs. Constituency: PP Attachment

~ Dependency: one word (with) assigned a different parent

the children ate the cake with a spoon
> corenlp.run: spoon is child instead of with. This is just a different formalism

> More predicate-argument focused view of syntax

> “What’s the main verb of the sentence? What is its subject and object?”
— easier to answer under dependency parsing



Parsers Today



Modern Parsers

> Shift-reduce parsers: parsers that construct a tree from a sentence via a
greedy sequence of operations. similar to parsing algorithms for compilers:

ROOT
A/K\/‘\

| ate some spaghetti bolognese

Shift, Shift, Left-arc, Shift, Shift, Left-arc, Shift, Right-arc, Right-arc, Right-arc

| <- ate some <- spaghetti spaghetti -> ate -> ROOT ->
bolognhese spaghetti ate

> These parsers historically worked less well. But with neural networks,
they’re pretty good and very fast!



Universal Dependencies

> Annotate dependencies with the same representation in many languages

unctr»
obl»
E I h nsubj:pass j case
NZIIS DET [ 9T NOUNW/;:JXFFa“X‘paSS vErRs"| [ADP| (DET |~ ‘" ~Noun"] YPUNCT
— A

— — — P et ~ —
The dog was chased by the cat
punct»
. nsubj:pass r/—obbﬂ
BU|gar|an NOUN‘T/P—R‘ON’T‘eXpraSS VERB ADP| ““**\'NoUN"| PUNCT
—_—— — — —— — — A
KyueTo ce npecnepsalle oT KOoTKaTta .
nsubj:pass punct
Czech NOUN’T/_< AUX T AUXPasSNyERET Y °PYNOUNT | JPUNCT
— — — — A
Pes byl honeén koCkou .
punct»
Swiss - ./_ o
NOUN" | "sUPIPassNyErErY (ADPT “®** ~'NoUN"] PUNCT
S — — — A
Hunden jagades av katten

http://universaldependencies.org/



Reflections on Structure

> What is the role of it now?

> Systems still make these kinds of judgments, just not explicitly

> To improve systems, do we need to understand what they do?



