CS371N: Natural Language Processing
Lecture 17: Parsing II

Greg Durrett

The University of Texas at Austin
Announcements

- A4 due today
- Midterm Thursday:
 - One 8.5”x11” notesheet
 - No calculators
 - Multiple choice, short-answer, and long-answer
Recap: PCFGs

<table>
<thead>
<tr>
<th>Grammar (CFG)</th>
<th>Lexicon</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROOT → S</td>
<td>1.0</td>
</tr>
<tr>
<td>S → NP VP</td>
<td>1.0</td>
</tr>
<tr>
<td>NP → DT NN</td>
<td>0.2</td>
</tr>
<tr>
<td>NP → NN NNS</td>
<td>0.5</td>
</tr>
</tbody>
</table>

- Context-free grammar: symbols which rewrite as one or more symbols
- Lexicon consists of “preterminals” (POS tags) rewriting as terminals (words)
- CFG is a tuple (N, T, S, R): N = nonterminals, T = terminals, S = start symbol (generally a special ROOT symbol), R = rules
- PCFG: probabilities associated with rewrites, normalize by source symbol
Recap: Learning PCFGs

- Maximum likelihood PCFG for a set of labeled trees: count and normalize!
 - Same as HMMs / Naive Bayes

```
S → NP VP  1.0
NP → PRP   0.5
NP → DT NN 0.5
...
```

Diagram:
- S → NP VP
- NP → PRP
- NP → DT NN
- She → NP
- ran → VP
- to → IN
- the → DT
- building → NN
Recap: CKY

- Chart: $T[i,j,X] = \text{best score for } X \text{ over } (i, j)$
- Base: $T[i,i+1,X] = \log P(X \rightarrow w_i)$
- Loop over all split points k, apply rules $X \rightarrow Y Z$ to build X in every possible way
- Recurrence:
 $$T[i,j,X] = \max_k \max_r T[i,k,X_1] + T[k,j,X_2] + \log P(X \rightarrow X_1 X_2)$$
- Runtime: $O(n^3G)$ \hspace{0.5cm} $G = \text{grammar constant}$
Parser Evaluation
Parser Evaluation

- View a parse as a set of labeled brackets / constituents

S(0,3)
NP(0,1)
PRP(0,1) (but standard evaluation does not count POS tags)
VP(1,3), VBD(1,2), NP(2,3), PRP(2,3)
Parser Evaluation

- Precision: number of correct predictions / number of predictions = 2/3
- Recall: number of correct predictions / number of golds = 2/4
- F1: harmonic mean of precision and recall = \((1/2 \times ((2/4)^{-1} + (2/3)^{-1}))^{-1}\)

 = 0.57 (closer to min)
Results

- Standard dataset for English: Penn Treebank (Marcus et al., 1993)
- “Vanilla” PCFG: ~71 F1
- Best PCFGs for English: ~90 F1
- State-of-the-art discriminative models (using unlabeled data): 95 F1
- Other languages: results vary widely depending on annotation + complexity of the grammar
Grammar Preprocessing
Binarization

- To parse efficiently, we need our PCFGs to be at most binary (not CNF)

\[
P(VP \rightarrow VBD \text{ NP PP PP}) = 0.2
\]

\[
P(VP \rightarrow VBZ \text{ PP}) = 0.1
\]

...

- Solution: transform the trees. Introduce intermediate special symbols that rewrite deterministically

\[
P(VP \rightarrow VBD \text{ VP-[NP PP PP]}) = 0.2
\]

\[
P(VP-[NP PP PP] \rightarrow NP \text{ VP-[PP PP]}) = 1.0
\]

\[
P(VP-[PP PP] \rightarrow PP \text{ PP}) = 1.0
\]
Language is not context-free: NPs in different contexts rewrite differently

\([\text{They}]_{\text{NP}} \text{ received } [\text{the package of books}]_{\text{NP}}\)
Vertical Markovization

Basic tree (v = 1)

Why is this a good idea?
Augment the grammar: deterministically transform symbols to be “less context free” (binarization not shown here)

75 F1 with basic PCFG => 86.3 F1 with this highly customized PCFG (SOTA was 90 F1 at the time, but with more complex methods)

Klein and Manning (2003)
Dependency Parsing
Dependency Parsing

- Dependencies: syntactic structure is defined by relations between words
 - Head (parent, governor) connected to dependent (child, modifier)
 - Each word has exactly one parent except for the ROOT symbol, dependencies must form a directed acyclic graph

- POS tags same as before, usually run a tagger first as preprocessing
Why are they defined this way?

- Constituency tests:
 - Substitution by *proform*: the dog *did so* [*ran to the house*], *he* [*the dog*] ran to the house
 - Clefting (*It was* [*to the house*] *that the dog ran*...)

- Dependency: verb is the root of the clause, everything else follows from that
 - No notion of a VP!
Still a notion of hierarchy! Subtrees often align with constituents
Dependency Parsing

- Can label dependencies according to syntactic function
- Major source of ambiguity is in the structure, so we focus on that more (labeling separately with a classifier works pretty well)
Constituency: several rule productions need to change
Dependency vs. Constituency: PP Attachment

- Dependency: one word (with) assigned a different parent

the children ate the cake with a spoon

- corenlp.run: *spoon* is child instead of *with*. This is just a different formalism

- More predicate-argument focused view of syntax

- “What’s the main verb of the sentence? What is its subject and object?” — easier to answer under dependency parsing
Parsers Today
Modern Parsers

- Shift-reduce parsers: parsers that construct a tree from a sentence via a greedy sequence of operations. Similar to parsing algorithms for compilers:

```
ROOT
I ate some spaghetti bolognese
```

Shift, Shift, Left-arc, Shift, Shift, Left-arc, Shift, Right-arc, Right-arc, Right-arc

```
I <- ate  some <- spaghetti  spaghetti -> ate -> ROOT ->
some <- spaghetti  spaghetti -> ate -> ROOT ->
I <- ate  some <- spaghetti  spaghetti -> ate -> ROOT ->
```

- These parsers historically worked less well. But with neural networks, they’re pretty good and very fast!
Universal Dependencies

- Annotate dependencies with the same representation in many languages

http://universaldependencies.org/
Reflections on Structure

‣ What is the role of it now?

‣ Systems still make these kinds of judgments, just not explicitly

‣ To improve systems, do we need to understand what they do?