
CS388:	Natural	Language	Processing

Greg	Durret

Lecture	18:	
Understanding	In-
Context	Learning

Administrivia

‣ Project	proposals	for	independent	FPs	due	Friday

‣ A5	out	today

‣ Midterm	grading	underway

Context	for	the	rest	of	the	course
‣ Next	few	lectures:	revisit	what	we	can	do	with	large	language	models

‣ Prompting

‣ Explaining	reasoning

‣ After:	understand	neural	nets	better

‣ Factuality	of	responses

‣ How	do	we	build	ChatGPT?	(RLHF)

‣ Finally:	miscellaneous	modern	topics

This	Lecture

‣ Prompting:	best	practices	and	why	it	works

‣ Zero-shot	prompting:	role	of	the	prompt

‣ Few-shot	prompting	(in-context	learning):	characterizing	demonstrations

‣ Understanding	in-context	learning	(brief)

‣ Induction	heads	and	mechanistic	interpretability

‣ Factuality	of	responses

Zero-shot	Prompting

Zero-shot	Prompting
‣ GPT-3/4/ChatGPT	can	handle	lots	of	existing	tasks	based	purely	on	
incidental	exposure	to	them	in	pre-training

‣ We’ll	discuss	two	paradigms:	zero-shot	prompting,	where	no	examples	
are	given	to	a	model	(just	a	text	specification),	and	few-shot	prompting,	
where	a	few	examples	are	given	in-context

‣ Both	paradigms	can	theoretically	handle	classification,	text	generation,	
and	more!

‣ Example	from	summarization:	the	token	“tl;dr”	(“too	long;	didn’t	read”)	
is	an	indicator	of	summaries	in	the	wild

Zero-shot	Prompting

Review:	The	movie’s	acting	could’ve	been	better,	but	the	visuals	and	
directing	were	top-notch. 
Out	of	positive,	negative,	or	neutral,	this	review	is

GPT-3

neutral

‣ Single	unlabeled	datapoint	x,	want	to	predict	label	y

‣ Wrap	x	in	a	template	we	call	a	verbalizer	v

x	=	The	movie’s	acting	could’ve	been	better,	but	the	visuals	and	directing	were	top-notch.

Zero-shot	Prompting

‣ Single	unlabeled	datapoint	x,	want	to	predict	label	y

GPT-3

Review:	The	movie’s	acting	could’ve	been	better,	but	the	visuals	and	
directing	were	top-notch. 
On	a	1	to	4	star	scale,	the	reviewer	would	probably	give	this	movie

3	stars.

‣ Wrap	x	in	a	template	we	call	a	verbalizer	v

x	=	The	movie’s	acting	could’ve	been	better,	but	the	visuals	and	directing	were	top-notch.

Ways	to	do	classification
‣ Approach	1:	Generate	from	the	model	and	read	off	the	generation

‣ What	if	you	ask	for	a	star	rating	and	it	doesn’t	give	you	a	number	of	stars	but	
just	says	something	else?

‣ Approach	2:	Compare	probs:	“Out	of	positive,	negative,	or	neutral,	this	review	
is	_”	Compare	P(positive	|	context),	P(neutral	|	context),	P(negative	|	context)

‣ This	constrains	the	model	to	only	output	a	valid	answer,	and	you	can	
normalize	these	probabilities	to	get	a	distribution

Variability	in	Prompts

y-
ax
is
:	t
as
k	
pe

rf
or
m
an
ce

Gonen	et	al.	(2022)

‣ Plot:	large	number	of	
prompts	produced	by	
{manual	writing,	
paraphrasing,	
backtranslation}

x-axis:	perplexity	of	the	prompt.	How	natural	is	it?	
How	much	does	it	appear	in	the	pre-training	data?

‣ A	little	prompt	
engineering	will	get	
you	somewhere	
decent

Variability	in	Prompts

Gonen	et	al.	(2022)

‣ OPT-175B:	average	of	best	50%	of	
prompts	is	much	better	than	
average	over	all	prompts

Prompt	Optimization

‣ A	number	of	methods	exist	for	searching	over	prompts	(either	using	
gradients	or	black-box	optimization)

‣ Most	of	these	do	not	lead	to	dramatically	better	results	than	doing	some	
manual	engineering/hill-climbing	(and	they	may	be	computationally	
intensive)

‣ Nevertheless,	the	choice	of	prompt	is	very	important	in	general	for	zero-
shot	settings!	We	will	see	more	next	time.

‣ In	two	lectures:	models	that	are	trained	to	do	better	at	prompts	(RLHF)

Few-shot	Prompting

Few-shot	Prompting
‣ Form	“training	examples”	from	(x,	y)	pairs,	verbalize	them	(can	be	
lighter-weight	than	zero-shot	verbalizer)	

‣ Input	to	GPT-3:	v(x1)	v(y1)	v(x2)	v(y2)	…	v(xtest)
Review:	The	cinematography	was	stellar;	great	movie! 
Sentiment	(positive	or	negative):	positive

Review:	The	plot	was	boring	and	the	visuals	were	subpar.

Sentiment	(positive	or	negative):	negative

Review:	The	movie’s	acting	could’ve	been	better,	but	the	visuals	and	directing	were	top-notch.

Sentiment	(positive	or	negative):

GPT-3

positive

What	can	go	wrong?
Review:	The	movie	was	great! 
Sentiment:	positive

Review:	I	thought	the	movie	was	alright;	I	would've	seen	it	again.	

Sentiment:	positive

Review:	The	movie	was	pretty	cool!

Sentiment:	positive

Review:	Pretty	decent	movie!

Sentiment:	positive

Review:	The	movie	had	good	enough	acting	and	the	visuals	were	nice.	

Sentiment:	positive

Review:	There	wasn't	anything	the	movie	could've	done	better.

Sentiment:	positive

Review:	Okay	movie	but	could've	been	better. 
Sentiment: GPT-3 positive

What	can	go	wrong?

‣ What	if	we	take	random	sets	of	
training	examples?	There	is	
quite	a	bit	of	variance	on	basic	
classification	tasks,	due	to	
effects	like	this

Zhao	et	al.	(2021)

‣ Note:	these	results	are	with	
basic	GPT-3	and	not	Instruct-
tuned	versions	of	the	model.	
This	issue	has	gotten	a	lot	better

What	can	go	wrong?
‣ Varies	even	across	
permutations	of	
training	examples

Zhao	et	al.	(2021)

‣ x-axis:	different	
collections	of	train	
examples. 
y-axis:	sentiment	
accuracy.	Boxes	
represent	results	over	
different	permutations	
of	the	data

What	can	go	wrong?
‣ Having	unbalanced	
training	sets	leads	to	
high	“default”	
probabilities	of	
positive;	that	is,	if	
we	feed	in	a	null	xtest

Zhao	et	al.	(2021)

‣ Solution:	“calibrate”	the	
model	by	normalizing	by	
that	probability	of	null	xtest

‣ Leads	to	higher	performance;	not	necessarily 
crucial	with	prompt-tuned	models

Results:	HELM

Liang	et	al.	(2022)

‣ Each	line	is	a	different	
LM

‣ More	in-context	
examples	generally	leads	
to	better	performance

‣ What	do	we	see	here?

‣ So,	how	much	better	is	
few-shot	compared	to	
zero-shot?

Results:	HELM

Liang	et	al.	(2022)
‣ What	trends	do	these	show?

T0pp

Rethinking	Demonstrations

Min	et	al.	(2022)

‣ Surprising	result:	how	
necessary	even	are	the	
demonstrations?

‣ Using	random	labels	
does	not	substantially	
decrease	performance??

Rethinking	Demonstrations

Min	et	al.	(2022)

‣ Having	even	mislabeled	demonstrations	is	much	better	than	having	no	
demonstrations,	indicating	that	the	form	of	the	demonstrations	is	partially	
responsible	for	in-context	learning

Factuality	and	Hallucination

Factuality

‣ When	a	language	model	is	prompted	to	do	a	task	like	sentiment,	you	
really	don’t	see	enough	data	points	to	“learn”	much.	You’re	relying	on	
the	model’s	pre-training

‣ When	you	fine-tune	a	bag-of-words	model	on	sentiment,	you	learn	word	
meanings	from	the	data	itself

‣ When	you	fine-tune	an	embedding-based	model	or	BERT	on	sentiment,	
you	still	learn	from	the	data,	and	the	pre-training	helps	generalize

‣ What	implications	does	this	have	for	producing	factual	knowledge	from	
LMs?

Factuality

‣ Language	models	model	distributions	over	text,	not	facts.	There’s	no	
guarantee	that	what	they	generate	is	factual:

‣ Language	models	are	trained	on	the	web.	Widely-popularized	
falsehoods	may	be	reproduced	in	language	models

‣ A	language	model	may	not	be	able	to	store	all	rare	facts,	and	as	a	
result	moderate	probability	is	assigned	to	several	options

TruthfulQA

Factuality

‣ Language	models	model	distributions	over	text,	not	facts.	There’s	no	
guarantee	that	what	they	generate	is	factual:

‣ Language	models	are	trained	on	the	web.	Widely-popularized	
falsehoods	may	be	reproduced	in	language	models

‣ A	language	model	may	not	be	able	to	store	all	rare	facts,	and	as	a	
result	moderate	probability	is	assigned	to	several	options

‣ There	are	many	proposed	solutions	to	factuality.	How	do	we	
evaluate	them?	How	do	we	check	facts	“explicitly”?

Grounding	LM	Generations
‣ Suppose	we	have	text	generated	from	an	LM.	We	want	to	check	it	
against	a	source	document.	What	techniques	have	we	seen	so	far	that	
can	do	this?

‣ What	steps	are	involved?

1.	Decide	what	text	you	are	grounding	in	(may	involve	retrieval)

2.	Decompose	your	text	into	pieces	of	meaning	to	ground

3.	Check	each	piece

‣ For	now,	we’ll	assume	the	reference	text/documents	are	given	to	us	
and	not	focus	on	step	1

Concrete	Setting

‣ Dataset:	ChatGPT-generated	biographies	of	people.	May	contain	errors,	
particularly	when	dealing	with	obscure	people!

Sewon	Min	and	Kalpesh	Krishna	et	al.	(2023)

Step	2:	Decomposition

Ryo	Kamoi	et	al.	(2023)

Yixin	Liu	et	al.	(2023)

‣ Can	go	deeper:	think	of	
sentences	as	expressing	a	
collection	of	propositions

‣ Long	history	in	frame	semantics	
of	defining	these	propositions.	
Many	propositions	anchor	to	
verbs

‣ Recent	work:	extract	propositions	with	LLMs

‣ Simplest	approach:	each	sentence	
needs	to	be	grounded

Assignment	5
‣ Your	task:	look	at	how	to	verify	these	facts	against	passages	from	Wikipedia

Sewon	Min	and	Kalpesh	Krishna	et	al.	(2023)

‣ You’ll	look	at	
two	methods:	
word	overlap	
and	entailment	
models	(from	
Hugging	Face)

‣ Error	analysis:	are	
the	facts	right?	Do	
the	retrieved	
documents	
support	them?

Pipeline:	RARR

‣ The	“checking”	stage	is	also	
implemented	with	LLMs	here

‣ Full	pipeline	including	retrieval

‣ Decomposition	is	framed	as	
question	generation

Luyu	Gao	et	al.	(2022)

‣ Final	stage:	try	to	revise	the	output

Understanding	ICL:	Induction	Heads	
and	Mechanistic	Interpretability

Background:	Transformer	Circuits

Olsson	et	al.	(2022)

‣ There	are	mechanisms	in	Transformers	to	do	“fuzzy”	or	“nearest	
neighbor”	versions	of	pattern	completion,	completing	[A*][B*]	…	[A]	→	
[B]	,	where		A*	≈	A	and	B*	≈	B	are	similar	in	some	space

‣ We	can	find	these	heads	and	see	that	performance	improves;	can	we	
causally	link	these?

‣ Olsson	et	al.	want	to	establish	that	these	mechanisms	are	responsible	
for	good	ICL	capabilities

Induction	Heads

Olsson	et	al.	(2022)

‣ Induction	heads:	a	pair	of	attention	heads	in	different	layers	that	work	
together	to	copy	or	complete	patterns.

‣ The	first	head	copies	information	from	the	previous	token	into	each	token.

‣ Second	attention	head	to	attend	to	tokens	based	on	what	happened	
before	them,	rather	than	their	own	content.	Likely	to	“look	back”	and	
copy	next	token	from	earlier

‣ The	two	heads	working	together	cause	the	sequence	…[A][B]…[A]	to	be	more	
likely	to	be	completed	with	[B].

Induction	Heads

Olsson	et	al.	(2022)

‣ Can	cluster	models	based	
on	losses	over	time‣ Characterize	performance	by	ICL	score:	

loss(500th	token)	-	loss(50th	token)	—	average	
measure	of	how	much	better	the	model	is	
doing	later	once	it’s	seen	more	of	the	pattern

Induction	Heads

‣ Improvement	in	ICL	(loss	score)	correlates	with	emergence	of	induction	heads

Induction	Heads

Change	architecture	to	promote	induction	
heads	=>	phase	change	happens	earlier

Induction	Heads

‣ If	you	remove	induction	heads,	behavior	changes	dramatically

Interpretability
‣ Lots	of	explanations	for	why	ICL	works	—	but	these	haven’t	led	to	many	
changes	in	how	Transformers	are	built	or	scaled

‣ Several	avenues	of	inquiry:	theoretical	results	(capability	of	these	
models),	mechanistic	interpretability,	fully	empirical	(more	like	that	next	
time)

‣ Many	of	these	comparisons	focus	on	GPT-3	and	may	not	always	
generalize	to	other	models

Takeaways
‣ Zero-	and	few-shot	prompting	are	very	powerful	ways	of	specifying	new	
tasks	at	inference	time

‣ For	zero-shot:	form	of	the	prompt	matters,	we’ll	see	more	example	next	
times	when	we	look	at	chain-of-thought

‣ Several	analyses	of	why	it	works:	it	can	learn	to	do	regression	and	we	
know	a	bit	about	mechanisms	that	may	be	responsible	for	it

‣ For	few-shot:	number	and	order	of	the	examples	matters,	prompt	
matters	a	bit	less

