Recap: Zero-shot/Few-shot prompting

- Single unlabeled datapoint x, want to predict label y

 $$x = \text{The movie's acting could've been better, but the visuals and directing were top-notch.}$$

- Wrap x in a template we call a verbalizer v

Review: The movie’s acting could’ve been better, but the visuals and directing were top-notch.

Out of positive, negative, or neutral, this review is neutral.

- Need the right prompt (but there is a “plateau” of prompts that work)

- Few-shot: add one or more examples. Typically works better! Particularly with rich examples like we’ll see today

Recap: Understanding ICL

- ICL can learn a strategy like ordinary least-squares (Akyurek et al., 2022)

- We can identify *induction heads* in Transformers; these emerge when ICL performance improves (Olsson et al., 2022)
This Lecture

- Text rationales: text explanations of answers
- Chain-of-thought prompting (zero- and few-shot)
- Chain-of-thought: extensions
- Analysis of explanations

Text Rationales

Explaining Decisions

- How can we explain these decisions?

- this movie was great! would watch again
- the movie was gross and overwrought, but I liked it
- this movie was not really very enjoyable

Explaining Decisions

"Barbie boasts impressive production design, costumes, and a pair of leads up to the task of bringing their respective roles to life, but sadly comes up a little short when it comes to its screenplay."

Does this critic have a positive or negative view of Barbie? Explain your decision.

The critic has a mixed view of "Barbie."

- Positive aspects mentioned:
 1. Impressive production design
 2. Impressive costumes
 3. A pair of leads that are capable of bringing their respective roles to life

- Negative aspects mentioned:
 1. Comes up a little short when it comes to its screenplay

The critic appreciates several elements of the production, notably the design, costumes, and the performances of the lead actors. However, they also express dissatisfaction with the screenplay. So, while there are elements they admire, there’s also a significant point of criticism.
Explaining Decisions

I want to go to ___
Transformer model prediction: Austin

• How can we explain this decision?

Example from Vision

Laysan Albatross
Description: This is a large flying bird with black wings and a white belly.
Class Definition: The Laysan Albatross is a large seabird with a hooked yellow beak, black back and white belly.
Visual Explanation: This is a Laysan Albatross because this bird has a large wingspan, hooked yellow beak, and white belly.

• What makes a visual explanation? Should be relevant to the class (output) and the image (input)
• Are these features really what the model used?

Generating Explanations: Birds

This is a cardinal because ...
Deep Finegrained Classifier

• LSTM decoder looks at a feature vector and predicted label, then generates an explanation from those
• It’s trained on human explanations — so it will likely produce explanations that look good (it learns to be a language model)

E-SNLI

Premise: An adult dressed in black holds a stick.
Hypothesis: An adult is walking away, empty-handed.
Label: contradiction
Explanation: Holds a stick implies using hands so it is not empty-handed.

Premise: A child in a yellow plastic safety swing is laughing as a dark-haired woman in pink and coral pants stands behind her.
Hypothesis: A young mother is playing with her daughter in a swing.
Label: neutral
Explanation: Child does not imply daughter and woman does not imply mother.

Premise: A man in an orange vest leans over a pickup truck.
Hypothesis: A man is touching a truck.
Label: entailment
Explanation: Man leans over a pickup truck implies that he is touching it.

• Two formats: highlights and text

Hendricks et al. (2016)
Camburu et al. (2019)
Generating Explanations: E-SNLI

- $f = \text{function of premise and hypothesis vectors}$
- Similar to birds: explanation is conditioned on the label + network state f
- Information from f is fed into the explanation LSTM, although we don’t know how that information is being used

Camburu et al. (2019)

Text Rationales

- Can we generate a natural language explanation of a model’s behavior?
- What are some advantages to this?
 - Easy for untrained users to understand
 - Multitasking to produce human-written explanations may help us learn
- What are some risks/disadvantages?

Text Explanations

- Issues with text explanations:
 - Hard to produce/consume (these models are sort of clunky)
 - Hard to know if they faithfully reflect what a model is doing
 - More broadly, hard to evaluate
 - However, writing such explanations comes naturally to us...so that means that they reflect some kind of underlying reasoning process that we’re doing?
- Pre-2021: this process would usually be captured structurally in a model.
 2022 and beyond: chain of thought

Chain-of-thought
Text rationales vs. programs

Problem 2:
Question: From a pack of 52 cards, two cards are drawn together at random. What is the probability of both the cards being kings?

Options: A) 2/1223 B) 1/122 C) 1/221 D) 3/1253 E) 2/153

Rationale: Let s be the sample space.
Then n(s) = 52C2 = 1326
E = event of getting 2 kings out of 4
n(E) = 4C2 = 6
P(E) = 6/1326 = 1/221
Answer is C

Correct Option: C

- Rationales are most useful for problems where some computation is required. They can articulate the intermediate steps needed to solve it
- Some of the earliest work: math word problems
 Ling et al. (2017)

Chain-of-thought

- Chain-of-thought uses natural language as a scaffold for “reasoning”
- Unifies several ideas:
 - For math: relies on the fact that LLMs can do single steps of arithmetic okay. Builds on that to do multistep problems.
 - For QA: many problems involve reasoning decompositions
 E.g., *What’s the capital of the country where Aristotle lived?*
 - country = “country where Aristotle lived”
 - return *What’s the capital of [country]*
 - For other tasks: capture the kinds of behavior written in rationales

 Wei et al. (2022)

Chain-of-thought

- Typically a few-shot prompting technique where the in-context examples now contain explanations
- Answer is not generated in one go, but comes after an explanation that “talks through” the reasoning

Input:
Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?
A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

... Q: John takes care of 10 dogs. Each dog takes .5 hours a day to walk and take care of their business. How many hours a week does he spend taking care of dogs?
A:

Model output:
John takes care of 10 dogs. Each dog takes .5 hours a day to walk and take care of their business. So that is 10 x .5 = 5 hours a day. 5 hours a day x 7 days a week = 35 hours a week. The answer is 35 hours a week.

Wei et al. (2022)

Chain-of-thought

From our work: a synthetic test of multi-hop reasoning with extractive explanations:

Context: Christopher agrees with Kevin. Tiffany agrees with Matthew. Mary hangs out with Danielle. James hangs out with Thomas. Kevin is a student. Matthew is a plumber. Danielle is a student. Thomas is a plumber.

Q: Who hangs out with a student?
A: Mary.

- What kind of explanation would you write here?

Explanation: because Mary hangs out with Danielle and Danielle is a student.

Ye and Durrett (NeurIPS 2022)
Chain-of-thought

Context: Christopher agrees with Kevin. [...] Q: Who hangs out with a student?

Mary

Standard few-shot learning, no explanation

Context: Christopher agrees with Kevin. [...] Q: Who hangs out with a student?

Mary, because Mary hangs out with Danielle and Danielle is a student.

Predict-explain: answer is not conditioned on output explanation (original E-SNLI LSTM)

Context: Christopher agrees with Kevin. [...] Q: Who hangs out with a student?

Because Mary hangs out with Danielle and Danielle is a student, the answer is Mary.

Explain-predict: answer is conditioned on output explanation (Chain of Thought)

Chain-of-thought

Input

Label+
Explanation

Context: Christopher agrees with Kevin. [...] Q: Who hangs out with a student?

Mary, because Mary hangs out with Danielle and Danielle is a student.

Train Ex

Train Ex

Test Input

GPT-3

Output

Adam, because Adam plays with Ellen and Ellen is a doctor.

greedy decoding from GPT-3

Results

Does GPT-3 (text-davinci-001) work well without explanations?

- Not well. On Synthetic, surface heuristics give 50%.

Q1: Do these explanations help?

- Not really. Small gains on AdvHotpot and E-SNLI. No one technique dominates

Ye and Durrett (NeurIPS 2022)

Results

- Can language models generate reliable explanations?
- Factuality: whether an explanation is factually grounded in the input context
- Consistency: whether an explanation entails the answer
- Model-generated explanations are not always reliable

Ye and Durrett (NeurIPS 2022)
Results

Results on SYNTH data

- Instruct tuning helps but it seems to be not quite sufficient
- Bigger, instruction-tuned models are far ahead of others on this task

Accuracy (avg over 5 trials)

<table>
<thead>
<tr>
<th>Model</th>
<th>Non-expl</th>
<th>Explain-predict</th>
<th>Predict-explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPT-175B</td>
<td>40.5</td>
<td>49.5</td>
<td>54.8</td>
</tr>
<tr>
<td>davinci</td>
<td>29.6</td>
<td>47.1</td>
<td>58.5</td>
</tr>
<tr>
<td>text-davinci-001</td>
<td>51.3</td>
<td>53.6</td>
<td>72.0</td>
</tr>
<tr>
<td>text-davinci-002</td>
<td>86.9</td>
<td>81.1</td>
<td>86.9</td>
</tr>
</tbody>
</table>

Non-Instruct Models

Instruct Models

Chain-of-thought extensions

Step-by-Step

(d) Zero-shot-CoT (Ours)

Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there?
A: Let's think step by step.

(Output) There are 16 balls in total. Half of the balls are golf balls. That means that there are 8 golf balls. Half of the golf balls are blue. That means that there are 4 blue golf balls.

- Prompt for step-by-step reasoning: produces chains of thought without including demonstrations
- Separate prompt to extract the answer (“Therefore, the answer is ___”)

Kojima et al. (2022)

Step-by-Step

<table>
<thead>
<tr>
<th>Arithmetic</th>
<th>SingleEq</th>
<th>AddSub</th>
<th>MultiArith</th>
<th>GM8K</th>
<th>AQUA</th>
<th>SVAMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>zero-shot</td>
<td>74.6/78.7</td>
<td>72.2/77.0</td>
<td>17.7/22.7</td>
<td>10.4/12.5</td>
<td>22.4/22.4</td>
<td>58.8/58.7</td>
</tr>
<tr>
<td>zero-shot-cot</td>
<td>78.0/78.7</td>
<td>69.6/74.7</td>
<td>78.7/79.3</td>
<td>40.7/40.5</td>
<td>33.5/31.9</td>
<td>62.1/63.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Common Sense</th>
<th>Other Reasoning Tasks</th>
<th>Symbolic Reasoning</th>
</tr>
</thead>
<tbody>
<tr>
<td>SenseQA</td>
<td>Date Understand</td>
<td>Last Letter (4 words)</td>
</tr>
<tr>
<td>Strategy QA</td>
<td>Shuffled Objects</td>
<td>Coin Flip (4 times)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>zero-shot</td>
<td>68.8/72.6</td>
<td>12.7/54.3</td>
</tr>
<tr>
<td>zero-shot-cot</td>
<td>64.6/64.0</td>
<td>54.8/52.3</td>
</tr>
</tbody>
</table>

- text-davinci-002 (~ChatGPT-style model)

Kojima et al. (2022)
Step-by-Step

<table>
<thead>
<tr>
<th>No.</th>
<th>Category</th>
<th>Template</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>instructive</td>
<td>Let’s think step by step.</td>
<td>78.7</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>First, (*)1</td>
<td>77.3</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Let’s think about this logically.</td>
<td>74.5</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Let’s solve this problem by splitting it into steps. (*)2</td>
<td>72.2</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Let’s be realistic and think step by step.</td>
<td>70.8</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Let’s think like a detective step by step.</td>
<td>70.3</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Let’s think</td>
<td>57.5</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>Before we dive into the answer.</td>
<td>55.7</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>The answer is after the proof.</td>
<td>45.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>Category</th>
<th>Template</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>misleading</td>
<td>Don’t think. Just feel.</td>
<td>18.8</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>Let’s think step by step but reach an incorrect answer.</td>
<td>18.7</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>Let’s count the number of “a” in the question.</td>
<td>16.7</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>By using the fact that the earth is round,</td>
<td>9.3</td>
</tr>
</tbody>
</table>

14	irrelevant	By the way, I found a good restaurant nearby.	17.5
15		Abrakadabra!	15.5
16		It’s a beautiful day.	13.1

(Zero-shot) 17.7

Kojima et al. (2022)

Demo: Step-by-Step
(Math QA, StrategyQA)

Self-Consistency

- Ensembling across multiple outputs (either zero-shot or few-shot)
- GSM8k: 56.5 -> 74.4, 5% gains on several other math datasets, lower gains on text tasks

Wang et al. (2022)

Program-aided Language Models

- For math: why are we doing the arithmetic in the LLM itself?
- Instead: generate code fragments and actually execute them to get an answer (how most earlier math word problem systems worked)
- Many flavors of this: “Faithful Chain-of-thought”, “Program-of-thought”, Toolformer, etc.

Gao et al. (2022)
Self-Ask

- Similar idea but with QA/a search engine in the loop
- Demonstration shows sub-questions and sub-answers, can potentially do search at these intermediate points
- Bing’s “Sydney” agent has some capabilities around this

Press et al. (2022)

Self-Refinement

Liangming Pan et al. (2023)
Surveying the landscape of self-correction strategies

Demo: Self-correction
Other ideas

- For math: can having various other ways of doing programmatic verification
- For natural language reasoning: missing component of search and planning, discussed in “Language Model Cascades”
- For problems like fact-checking or QA involving complex reasoning, its difficult to verify all of the individual steps...so if CoT goes wrong, it may even be hard for a human to spot

Analysis of Explanations

What Makes Explanations Effective?

- Do LMs “follow” explanations?
- Probing LLMs with perturbed explanations
 - Perturbing Computation Trace
 - Perturbing Natural Language

Gold Explanation

<table>
<thead>
<tr>
<th>Trace</th>
<th>NL</th>
</tr>
</thead>
<tbody>
<tr>
<td>The last letter of “Bill” is letter “l”. The last of “Gates” is “s”. Concatenating “l” and “s” is “ls”. So the answer is ls.</td>
<td>Take the last letters of the words in “Bill Gates” and concatenate them.</td>
</tr>
</tbody>
</table>

Perturbing Trace

<table>
<thead>
<tr>
<th>Trace</th>
<th>NL</th>
</tr>
</thead>
<tbody>
<tr>
<td>The last letter of “Bill” is letter “l”. The last of “Gates” is “s”. Concatenating “l” and “s” is “ls”. So the answer is ls.</td>
<td>Take the last letters of the words in “Bill Gates” and concatenate them.</td>
</tr>
</tbody>
</table>

Perturbing NL

<table>
<thead>
<tr>
<th>Trace</th>
<th>NL</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Bill”, “l”, “Gates”, “s”, “l”, “s”, “ls”. So the answer is ls.</td>
<td>Take the last letters of the words in “Bill Gates” and concatenate them.</td>
</tr>
</tbody>
</table>

What Makes Explanations Effective?

- Do LMs “follow” explanations? How do explanations work for in-context-learning?
 - YES. Perturbing either trace or NL leads to performance degradation.
 - But perturbed explanations are still beneficial compared to not using explanations at all

Ye et al. (2022)
What Makes A Good Set of Explanations?

• Given a test query, we study how to form a maximally effective set of exemplars $T=\{q,e,a\}$
• Interplay between query and exemplar: relevance (using more relevant examples)
• Interplay between exemplars in the set: complementarity

Test Query:
Q: Peter bought 20 popsicles at $0.25 each. He bought 4 ice cream bars at $0.50 each. How much did he pay in total?
A: $0.25 \times 20 = 5.00\). $0.5 \times 4 = 2.00\). $5 + 2 = 7.00\). The answer is 7.

Addition Exemplars:
Q: Marion received 20 more turtles than Martha. If Martha received 40 turtles, how many turtles did they receive together?
A: $20 + 40 = 60$. $60 + 40 = 100$. The answer is 100.

Multiplication Exemplars:
Q: Car Wash Company cleans 80 cars per day. They make $5 per car washed. How much money will they make in 5 days?
A: $80 \times 5 = 400$. $400 \times 5 = 2000$. The answer is 2000.

Takeaways

• Chain-of-thought prompting (zero- and few-shot) can work well for tasks involving reasoning, especially mathematical reasoning and textual question answering with multiple steps.

• Several things needed to improve them, such as self-consistency and the ability to use other resources like code execution or APIs.

• Next time: RLHF, makes models better at zero-shot prompting and producing well-structured chain-of-thought responses.