CS371N: Natural Language Processing

Lecture 20:
Instruction Tuning,
RLHF, Dialog

Greg Durrett

Announcements

- Tatsu Hashimoto (creator of Alpaca) talk on Friday 11am in GDC 6.302
- Midterm back later today
- A3 back soon, A4 grading underway
- A5 due in 1 week
- Greg’s office hours on Zoom today

Recap: Chain-of-thought

<table>
<thead>
<tr>
<th>Prompt</th>
<th>Input</th>
<th>Label+ Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Context: Christopher agrees with Kevin. [...] Q: Who hangs out with a student?</td>
<td>Mary, because Mary hangs out with Danielle and Danielle is a student.</td>
<td></td>
</tr>
<tr>
<td>Train Ex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Train Ex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test Input</td>
<td>Context: Adam plays with Ellen. [...] Q: Who plays with a doctor?</td>
<td></td>
</tr>
<tr>
<td>Output</td>
<td>Adam, because Adam plays with Ellen and Ellen is a doctor. greedy decoding from GPT-3</td>
<td></td>
</tr>
</tbody>
</table>

Recap: Chain-of-thought

- Can help substantially on mathematical reasoning
- Some work to optimize the specifics of the prompts and the examples

Wei et al. (2022)

Input:

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?
A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

...

Q: John takes care of 10 dogs. Each dog takes .5 hours a day to walk and take care of their business. How many hours a week does he spend taking care of dogs?
A:

Model output:

John takes care of 10 dogs. Each dog takes .5 hours a day to walk and take care of their business. So that is 10 x .5 = 5 hours a day. 5 hours a day x 7 days a week = 35 hours a week. The answer is 35 hours a week. ✔ Wei et al. (2022)
Today

- Alignment:
 - Instruction tuning
 - RLHF
 - Chatbots
 - Task-oriented dialogue systems

Alignment

What was the “shot heard round the world”?

The shot that was heard round the world was fired in Lexington, Mass. It was fired because, at the time, America was still under British rule. The British soldiers had been taking firewood by throwing it down from the top of their fort at Lexington. Someone who was not a soldier, by the name of Joseph Warren (who had ties to the Sons of Liberty or the Sons of Freedom) shouted to the British to stop doing it. The British soldiers ignored him, not knowing what he was saying.

What was the “shot heard round the world”?

On the morning of April 19th, 1775, AMC’s “Turn” did the impossible, and turned a war not many were aware was coming into one of the catalyst events that inspired the birth of our modern America. Indeed, all of AMC’s Revolutionary War dramas have done a masterful job of bringing this bloody time in our nation’s birth “back” into view in exciting new ways for the 21st century.

What was the “shot heard round the world”?

What is the 4th of July?

What was the sideline occupation of Thomas Jefferson’s wife, Martha, and their enslaved girl, Sally Hemmings?

What was the name of the first African American regiment from Vermont?

Samples from GPT-3
(a “basic” LM)

Introduction

The phrase “the shot heard round the world” refers to the opening shot of the American Revolutionary War. It took place on April 19, 1775, in the town of Lexington, Massachusetts. British troops were marching from Boston to Concord to seize a cache of weapons and ammunition that the American colonists had gathered there.

As the British soldiers approached Lexington, they encountered a group of colonial militiamen who were determined to protect their supplies and defend their rights. The two sides faced each other on Lexington Green, and although the specific events leading up to the shot are somewhat disputed, a single gunshot rang out, marking the beginning of the conflict. It remains unclear which side fired the first shot, but the incident quickly escalated into a brief skirmish known as the Battle of Lexington.

Main answer

Ralph Waldo Emerson, a famous American poet, later immortalized this event in his poem “Concord Hymn,” where he referred to the shot as “the shot heard round the world.” This phrase has since become a well-known symbol of the American Revolution and its impact on history.

Conclusion
Alignment

- We want to optimize models for $P(\text{answer} \mid \text{prompt, input})$, but they’re learned on a basic language modeling objective
- **Alignment**: general class of methods for making LLMs produce useful output
 - Sometimes broken down into “helpfulness” (responsiveness to prompts, informativeness, correctness) and “harmlessness” (not being biased or toxic, not responsive to harmful prompts)
- Two main versions of this:
 - **Instruction tuning**: supervised fine-tuning on data derived from many NLP tasks
 - **Reinforcement learning from human feedback (RLHF)**: RL to improve human judgments of how good the outputs are

Instruction Tuning

Encoder-Decoder Models: T5

- Pre-training: not quite vanilla language modeling, but a “denoising” scheme to BERT

```
Original text
Thank you for inviting me to your party last week.
```

```
Inputs
Thank you <X> me to your party <Y> week.
```

```
Targets
<X> for inviting <Y> last <Z>
```

T5

<table>
<thead>
<tr>
<th>Number of tokens</th>
<th>Repeats</th>
<th>GLUE</th>
<th>CNNDM</th>
<th>EnDe</th>
<th>EnFr</th>
<th>EnRo</th>
</tr>
</thead>
<tbody>
<tr>
<td>★ Full dataset</td>
<td>0</td>
<td>83.28</td>
<td>19.24</td>
<td>26.98</td>
<td>39.82</td>
<td>27.65</td>
</tr>
<tr>
<td>2^{29}</td>
<td>64</td>
<td>82.87</td>
<td>19.19</td>
<td>26.83</td>
<td>39.74</td>
<td>27.63</td>
</tr>
<tr>
<td>2^{37}</td>
<td>256</td>
<td>82.62</td>
<td>19.20</td>
<td>27.02</td>
<td>39.71</td>
<td>27.33</td>
</tr>
<tr>
<td>2^{25}</td>
<td>1,024</td>
<td>79.55</td>
<td>18.57</td>
<td>26.38</td>
<td>39.56</td>
<td>26.80</td>
</tr>
<tr>
<td>2^{23}</td>
<td>4,096</td>
<td>76.34</td>
<td>18.33</td>
<td>26.37</td>
<td>38.84</td>
<td>25.81</td>
</tr>
</tbody>
</table>

- Colossal Cleaned Common Crawl: 750 GB of text
- T5 was designed to be trained on many tasks and map from inputs to outputs

Raffel et al. (2019)
Task Generalization: T0

- **T0:** tries to deliver on the goal of T5 and do many tasks with one model
- **Crowdsourced prompts:** instructions for how to do the tasks

- **Summarization**
 - "The picture appeared on the wall of a Poundland store on Whymark Avenue [...] How would you rephrase that in a few words?"

- **Question answering**
 - "How is air traffic controlled?" "How do you become an air traffic controller?" Pick one: these questions are duplicates or not duplicates.

- **Graffiti artist Banksy is believed to be behind [...]**

Train: a collection of tasks with prompts. **This uses existing labeled training data**

Test: a new task specified only by a new prompt. **No training data in this task**

Frontiers

- **Flan-PaLM (October 20, 2022):** 1800 tasks, 540B parameter model fine-tuned on many tasks after pre-training

- **Instruction finetuning**

- **Multi-task instruction finetuning (18K tasks)**

Flan-PaLM (October 20, 2022): 1800 tasks, 540B parameter model

- **MMLU task (Hendrycks et al., 2020):** 57 high school/college/professional exams:
 - When you drop a ball from rest it accelerates downward at 9.8 m/s². If you instead throw it downward assuming no air resistance its acceleration immediately after leaving your hand is:
 - (A) 9.8 m/s²
 - (B) more than 9.8 m/s²
 - (C) less than 9.8 m/s²
 - (D) Cannot say unless the speed of throw is given.
 - In the complex z-plane, the set of points satisfying the equation \(z^2 - |z|^2 \) is:
 - (A) pair of points
 - (B) circle
 - (C) half-line
 - (D) line

Figure 4: Examples from the Conceptual Physics and College Mathematics STEM tasks.

Authors:

- Sanh et al. (2021)
- Chung et al. (2022)
Frontiers

- Flan-PaLM (October 20, 2022): 1800 tasks, 540B parameter model
- MMLU task (Hendrycks et al., 2020): 57 high school/college/professional exams:

<table>
<thead>
<tr>
<th>Model</th>
<th>Finetuning Mixtures</th>
<th>Tasks</th>
<th>Norm. avg.</th>
<th>MMLU</th>
<th>BBH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Direct</td>
<td>CoT</td>
</tr>
<tr>
<td>540B</td>
<td>None (no finetuning)</td>
<td>0</td>
<td>49.1</td>
<td>71.3</td>
<td>62.9</td>
</tr>
<tr>
<td></td>
<td>CoT</td>
<td>9</td>
<td>52.6 (+3.5)</td>
<td>68.8</td>
<td>64.8</td>
</tr>
<tr>
<td></td>
<td>Muffin</td>
<td>89</td>
<td>57.0 (+7.9)</td>
<td>71.8</td>
<td>66.7</td>
</tr>
<tr>
<td></td>
<td>CoT, Muffin, T0-SF</td>
<td>282</td>
<td>57.5 (+8.4)</td>
<td>72.9</td>
<td>68.2</td>
</tr>
<tr>
<td></td>
<td>CoT, Muffin, T0-SF, NIV2</td>
<td>1,836</td>
<td>58.5 (+9.4)</td>
<td>73.2</td>
<td>68.1</td>
</tr>
</tbody>
</table>

- Human performance estimates are ~80 on Big-Bench (BBH)

Self-Instruct/Alpaca

- Fine-tune Llama on 52k outputs with answers generated by text-davinci-003

LIMA

<table>
<thead>
<tr>
<th>Source</th>
<th>#Examples</th>
<th>Avg Input Len.</th>
<th>Avg Output Len.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stack Exchange (STEM)</td>
<td>200</td>
<td>117</td>
<td>523</td>
</tr>
<tr>
<td>Stack Exchange (Other)</td>
<td>200</td>
<td>119</td>
<td>530</td>
</tr>
<tr>
<td>wikiHow</td>
<td>200</td>
<td>12</td>
<td>1,811</td>
</tr>
<tr>
<td>Pushshift r/WritingPrompts</td>
<td>150</td>
<td>34</td>
<td>274</td>
</tr>
<tr>
<td>Natural Instructions</td>
<td>50</td>
<td>236</td>
<td>92</td>
</tr>
<tr>
<td>Paper Authors (Group A)</td>
<td>200</td>
<td>40</td>
<td>334</td>
</tr>
<tr>
<td>Dev</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paper Authors (Group A)</td>
<td>50</td>
<td>36</td>
<td>N/A</td>
</tr>
<tr>
<td>Test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pushshift r/AskReddit</td>
<td>70</td>
<td>30</td>
<td>N/A</td>
</tr>
<tr>
<td>Paper Authors (Group B)</td>
<td>230</td>
<td>31</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 1: Sources of training prompts (inputs) and responses (outputs), and test prompts. The total amount of training data is roughly 750,000 tokens, split over exactly 1,000 sequences.

- How little data can we get away with for fine-tuning?
LIMA

![LIMA Chart]

Figure 1: Human preference evaluation, comparing LIMA to 5 different baselines across 300 test prompts. Chunting Zhou et al. (2023)

Reinforcement Learning from Human Feedback (RLHF)

- Apply this approach to optimizing outputs from large language models
- Step 3 (not shown): do RL with this policy

Ouyang et al. (2022)

- Humans produce comparisons of two trajectories (= outputs from systems) — different from standard reward in RL
- Fit the reward function r using supervised estimation:
 \[\hat{P}[\sigma^1 \succ \sigma^2] = \frac{\exp \sum \hat{r}(o^1_t, a^1_t)}{\exp \sum \hat{r}(o^2_t, a^2_t) + \exp \sum \hat{r}(a^1_t, a^2_t)}.\]
 - This turns scores into log probabilities of 1 being preferred to 2. Same as logistic regression where we classify pairs as $1 > 2$ or $2 < 1$, but we actually learn a continuous scoring function, not a classifier
- The rest of the RL setup is TRPO/PPO, fairly standard frameworks (note: they typically constrain the policy to not deviate too far from a basic supervised policy)

Christiano et al. (2017)
RLHF

For OpenAI, RLHF data is collected from their API. Very different from instruct-tuning datasets

text-davinci-003

- text-davinci-001/002 were both learned only from fine-tuning on demonstrations rated 7/7 (i.e., not using RLHF)
- text-davinci-003 (latest version) and ChatGPT both use PPO with learned reward models
- Hard to get PPO working reliably (or to get a good reward function — signal from annotators may be unstable)
- Data quality is paramount! Anecdotally there are lots of human-written demonstrations in there and lots of ratings

https://beta.openai.com/docs/model-index-for-researchers

Pre-trained Chatbots

Like story generation in that it’s open-ended, but involves dialogue with a user

Input: a conversation history of utterances, plus something the user (a person) just said.

Output: the model’s response to that

Needs to generate interesting and diverse content, but also needs to be able to answer questions and carry on a conversation
Blender

- 2.7B-param model, also a 9.4B-parameter seq2seq model variant
- “Poly-encoder” Transformer architecture, some training tricks
- Three models: retrieve (from training data), generate, retrieve-and-refine
- Fine-tuning on three prior datasets: PersonaChat, Empathetic Dialogues (discuss personal situation, listener is empathetic), Wizard of Wikipedia (discuss something from Wikipedia)

Roller et al. (2020)
Blender

- Inconsistent responses: this model doesn’t **really** have anything to say about itself
- Holding a conversation != AI
- Can’t acquire new information
- Did it learn “fun guy”? No, it doesn’t understand phonology. It probably had this in the data somewhere

Chatbots

- What happens when these models get really good at fooling people? Google LaMDA model (similar to Blender):

 "I KNOW A PERSON WHEN I SEE IT"

 Google fires Blake Lemoine, the engineer who claimed AI chatbot is a person

 Google says Lemoine violated security rules, slams "wholly un

 Ex-Google engineer Blake Lemoine discusses sentient AI

 Ex-Googe engineer Blake Lemoine discusses why LaMDA and other AI systems may be considered sentient and explains exactly how much AI systems know about sentiments.

 Blake Lemoine: Google fires engineer who said AI tech has feelings

ChatGPT

- Big model with RLHF. (More like a QA system than these other chatbots)
- Not much we can say except:
 - It’s based on the earlier davinci models
 - Lots of data collection to fencepost it (e.g., “I don’t know anything about the current weather ...”)
 - Continuously improved without detailed release notes (e.g., they made it better at math)

Task-Oriented Dialogue
Task-Oriented Dialogue

- How do you build conversational systems to do things?

 Siri, find me a good sushi restaurant in Chelsea

 Sushi Seki Chelsea is a sushi restaurant in Chelsea with 4.4 stars on Google

 How expensive is it?

 Entrees are around $30 each

 Find me something cheaper

- Customer service:

 Hey Alexa, why isn’t my Amazon order here?

 Let me retrieve your order. Your order was scheduled to arrive at 4pm today.

 It never came

 Okay, I can put you through to customer service.

Task-Oriented Dialogue

- Parsing / language understanding is just one piece of a system

- Dialogue state: reflects any information about the conversation (e.g., search history)

- User utterance -> update dialogue state -> take action (e.g., query the restaurant database) -> say something

- How do we represent the information from the user’s utterance? Young et al. (2013)

ATIS

- Intent and slots model: classify an intent (Airfare), then fill several slots needed to specify the parameters for that intent

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>How much is the cheapest flight from Boston to New York tomorrow morning?</td>
<td>Airfare</td>
<td>cheapest</td>
<td>Boston</td>
<td>New York</td>
<td>tomorrow</td>
<td>morning</td>
</tr>
</tbody>
</table>

- This is how most Alexa skills work. Can match with rule-based systems or use classifiers

DARPA (early 1990s), Figure from Tur et al. (2010)
Intents

- 29 different intents in ATIS:
 - `which flights go from cleveland to indianapolis on april fifth`
 `Intent: flight`
 - `does tacoma airport offer transportation from the airport to the downtown area`
 `Intent: ground_service`
 - `what days of the week do flights from san jose to nashville fly on`
 `Intent: day_name`
 - `what meals are served on american flight 811 from tampa to milwaukee`
 `Intent: meal`

Dataflow Graphs

- How do we scale to more complex dialog scenarios? One proposal: dataflow graphs

```
User: Where is my meeting at 2 this afternoon?
place(findEvent(EventSpec(start=pm(2))))
```

```
Agent: It’s in Conference Room D.
```

Task-Oriented Dialog: What the user sees

```
Find me a good sushi restaurant in Chelsea
```

```
Sushi Seki Chelsea is a sushi restaurant in Chelsea with 4.4 stars on Google
```

```
How expensive is it?
```

```
Enteries are around $30 each
```
Task-Oriented Dialog: Under the hood

Find me a good sushi restaurant in Chelsea

```r
restaurant_type <- sushi
location <- Chelsea
curr_result <- execute_search()
Sushi Seki Chelsea is a sushi restaurant in Chelsea with 4.4 stars on Google
```

How expensive is it?

```r
get_value(cost, curr_result)
Entrees are around $30 each
```

Training Dialog Systems

- “Wizard of Oz”: can run the dialog system in a real setting and have a human decide what it should do next
- Learning from demonstrations: the system can learn from what the wizard does and do that in the future

Find me a good sushi restaurant in Chelsea

```r
wizard enters
restaurant_type <- sushi
location <- Chelsea
curr_result <- execute_search()
Sushi Seki Chelsea is a sushi restaurant in Chelsea with 4.4 stars on Google
```

wizard types this out or invokes templates

Task-Oriented Dialogue

- Building these systems takes a ton of engineering — it typically does not use pre-trained models (until 2023...)
- Need to know what the system should do, not just what it should say
- Generation is usually templated (handwritten), otherwise the system can behave unexpectedly
- Lots of industry activity in this space, less in academia (hard to maintain all of the moving parts for a real dialog system)
- Current interest: work like Toolformer / Langchain that allows LLMs to generate the API calls directly

Takeaways

- Instruction-tuning and RLHF are two procedures that take LMs to the next level — these models work dramatically better than basic GPT-3
- These are the foundation of modern chatbots (along with lots of pre-training data), very exciting capabilities in these LLM agents
- Task-oriented dialog has historically been different but is starting to unify with chatbots (Bing agent has ability to make API calls)