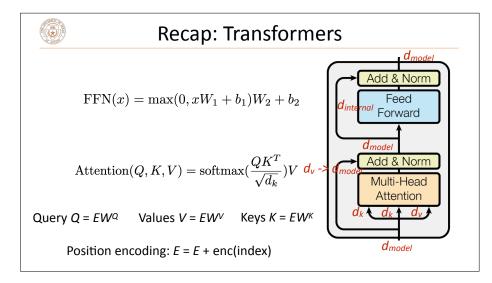
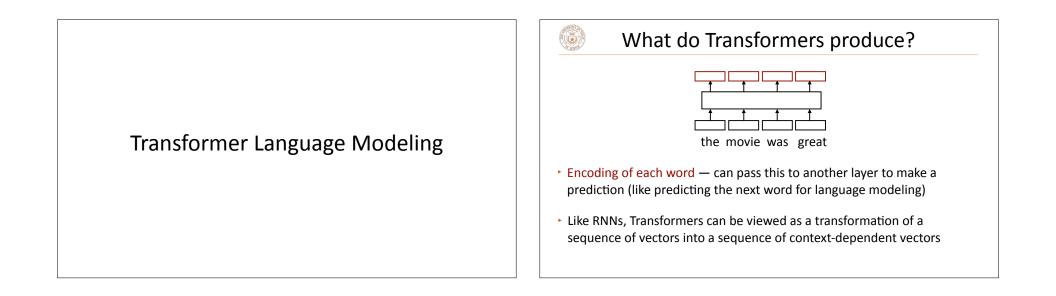
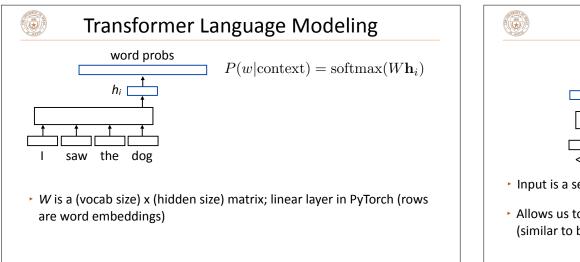


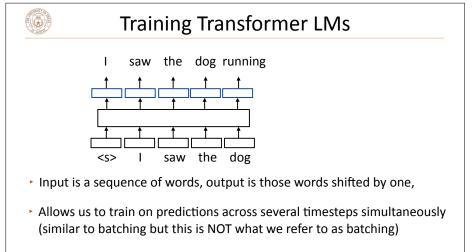
Announcements	
one week	
lecture on Zoom (Greg at COLM)	
n 3 weeks	
I	Announcements one week lecture on Zoom (Greg at COLM) in 3 weeks

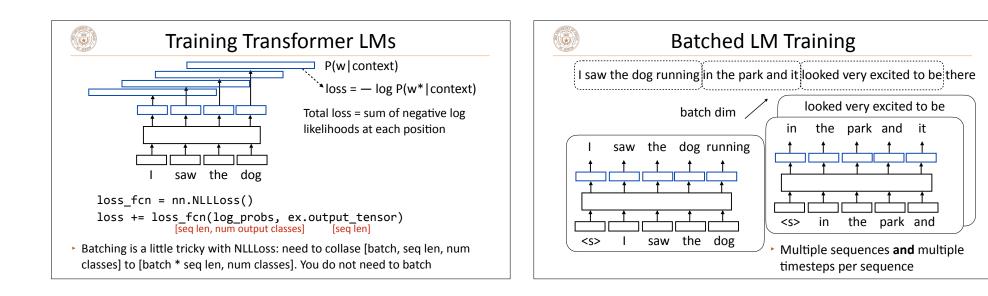


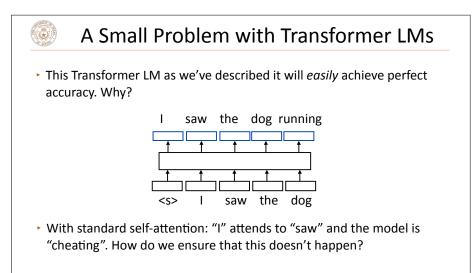
	Today	
 Transformer La 	nguage Modeling	
ELMo		
► BERT		
BERT results		
Subword token	ization (if time)	

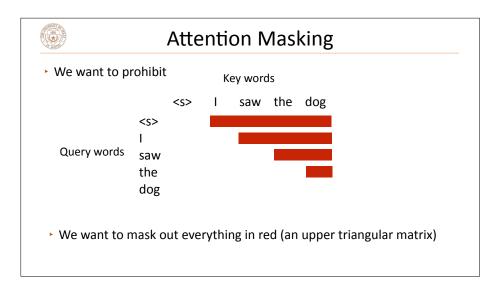


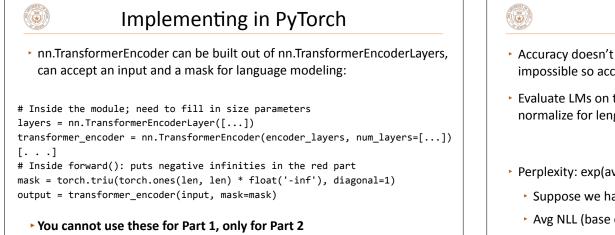












LM Evaluation

- Accuracy doesn't make sense predicting the next word is generally impossible so accuracy values would be very low
- Evaluate LMs on the likelihood of held-out data (averaged to normalize for length)

$$\frac{1}{n}\sum_{i=1}\log P(w_i|w_1,\ldots,w_{i-1})$$

- Perplexity: exp(average negative log likelihood). Lower is better
 - ▶ Suppose we have probs 1/4, 1/3, 1/4, 1/3 for 4 predictions
 - Avg NLL (base e) = 1.242 Perplexity = 3.464 <== geometric mean of denominators

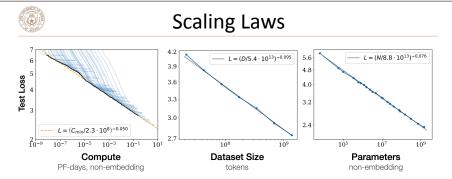


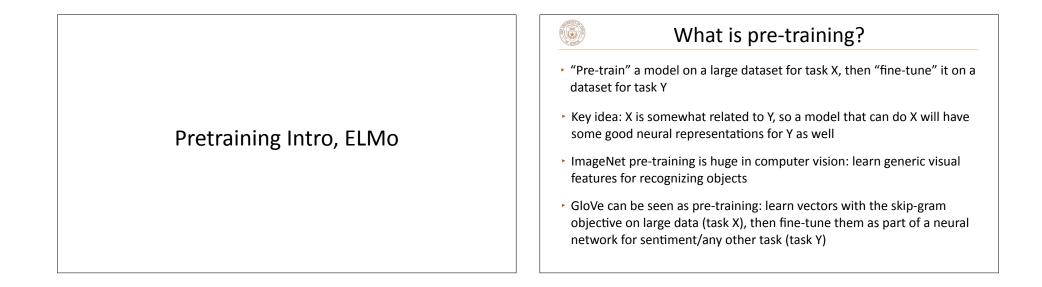
Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset size, and amount of compute² used for training. For optimal performance all three factors must be scaled up in tandem. Empirical performance has a power-law relationship with each individual factor when not bottlenecked by the other two.

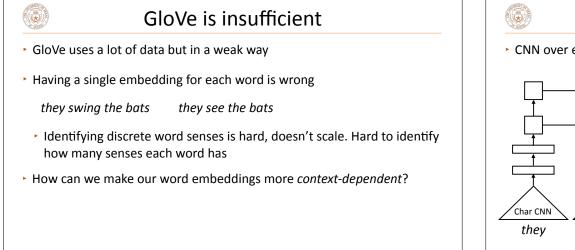
Transformers scale really well!

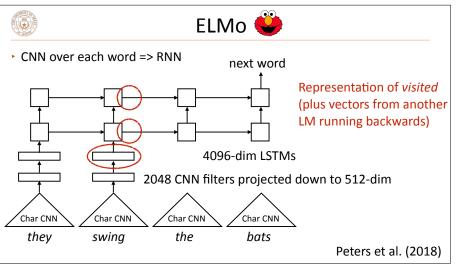
Kaplan et al. (2020)

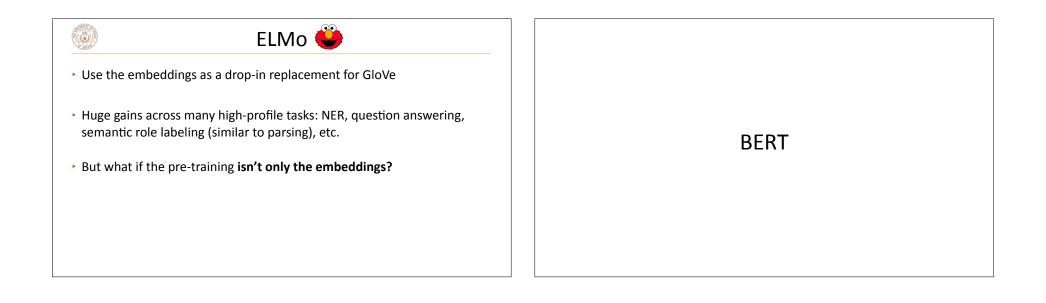
Takeaways

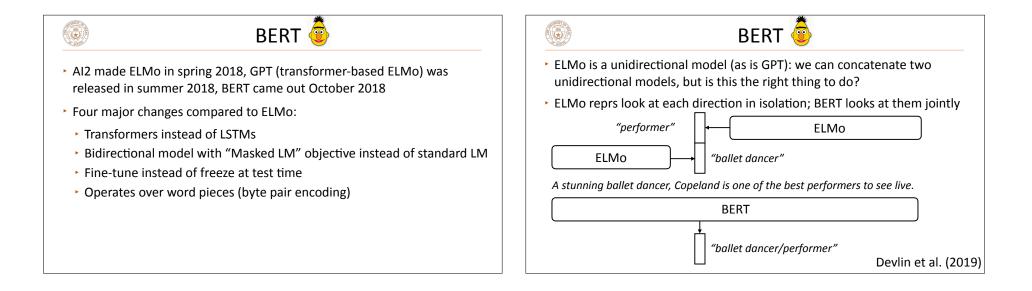
- Transformers are going to be the foundation for the much of the rest of this class and are a ubiquitous architecture nowadays
- Many details to get right, many ways to tweak and extend them, but core idea is the multi-head self attention and their ability to contextualize items in sequences

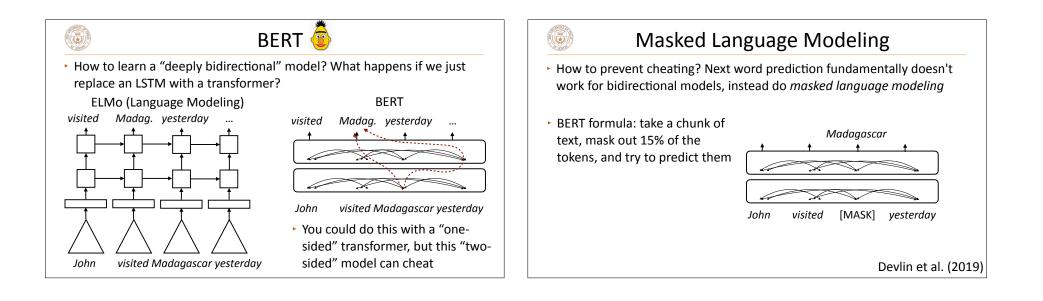


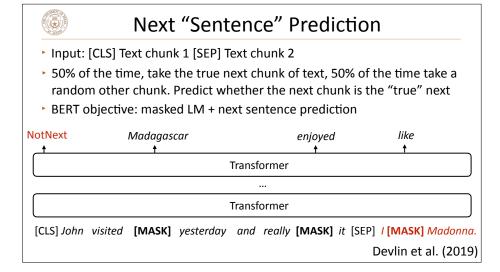


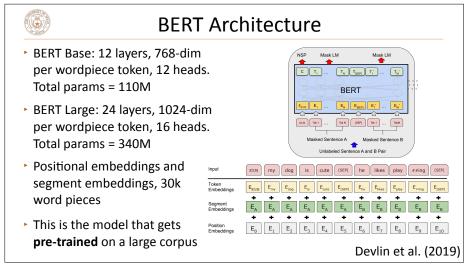


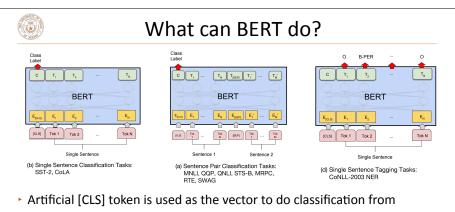






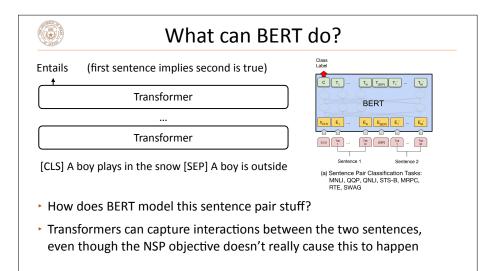






- Sentence pair tasks (entailment): feed both sentences into BERT
- BERT can also do tagging by predicting tags at each word piece Devlin et al. (2019)

Natural Lang	uage Infe	erence		
Premise	Hypothesis			
A boy plays in the snow	entails	A boy is outside		
A man inspects the uniform of a figure	contradicts	The man is sleeping		
An older and younger man smiling	neutral	Two men are smiling and laughing at cats playing		
 Long history of this task: "Recogniz 2006 (Dagan, Glickman, Magnini) 	zing Textual En	tailment" challenge in		
 Early datasets: small (hundreds of knowledge, temporal reasoning, e 		nbitious (lots of world		



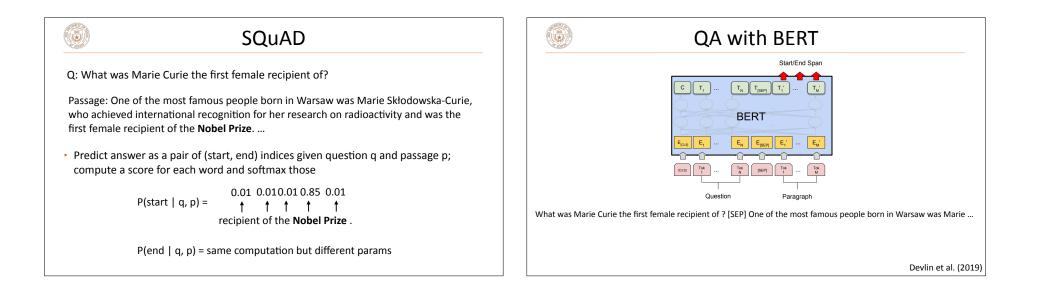
SQuAD

Q: What was Marie Curie the first female recipient of?

Passage: One of the most famous people born in Warsaw was Marie Skłodowska-Curie, who achieved international recognition for her research on radioactivity and was the first female recipient of the **Nobel Prize**. Famous musicians include Władysław Szpilman and Frédéric Chopin. Though Chopin was born in the village of Żelazowa Wola, about 60 km (37 mi) from Warsaw, he moved to the city with his family when he was seven months old. Casimir Pulaski, a Polish general and hero of the American Revolutionary War, was born here in 1745.

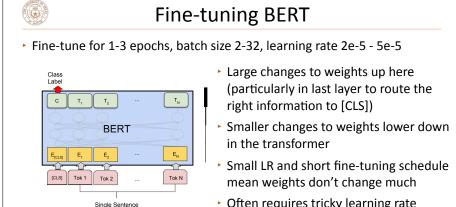
Answer = Nobel Prize

 Assume we know a passage that contains the answer. More recent work has shown how to retrieve these effectively (will discuss when we get to QA)



BERT cannot generate text (at least not in an obvious way)

- Can fill in MASK tokens, but can't generate left-to-right (well, you could put MASK at the end repeatedly, but this is slow)
- Masked language models are intended to be used primarily for "analysis" tasks



(b) Single Sentence Classification Tasks:

SST-2. CoLA

 Often requires tricky learning rate schedules ("triangular" learning rates with warmup periods)

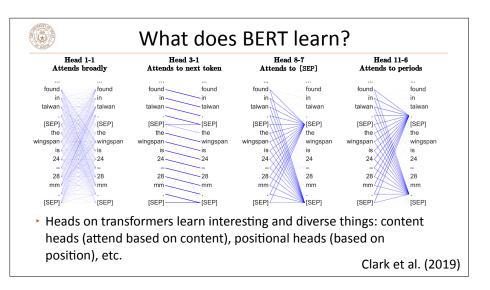
	CoLA	Train	Test	Task	Metrics	Domain
				Single-Se	entence Tasks	
	SST-2	8.5k 67k	1k 1.8k	acceptability sentiment	Matthews corr. acc.	misc. movie reviews
k	Similarity and Paraphrase Tasks					
BERT Results	MRPC STS-B	3.7k 7k	1.7k 1.4k	paraphrase sentence similarity	acc./F1 Pearson/Spearman corr.	news misc.
	QQP	364k	391k	paraphrase	acc./F1	social QA questions
	Inference Tasks					
	MNLI	393k	20k	NLI	matched acc./mismatched acc.	misc.
	QNLI	105k	5.4k	QA/NLI	acc.	Wikipedia
	RTE WNLI	2.5k 634	3k 146	NLI coreference/NLI	acc. acc.	news, Wikipedia fiction books

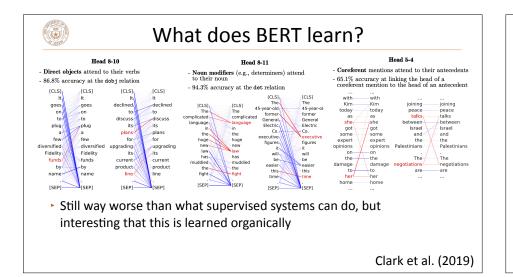
Results									
System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.9	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	88.1	91.3	45.4	80.0	82.3	56.0	75.2
BERTBASE	84.6/83.4	71.2	90.1	93.5	52.1	85.8	88.9	66.4	79.6
BERTLARGE	86.7/85.9	72.1	91.1	94.9	60.5	86.5	89.3	70.1	81.9

Huge improvements over prior work (even compared to ELMo)

 Effective at "sentence pair" tasks: textual entailment (does sentence A imply sentence B), paraphrase detection

Devlin et al. (2018)





Handling Rare Words

Words are a difficult unit to work with. Why?

- When you have 100,000+ words, the final matrix multiply and softmax start to dominate the computation, many params, still some words you haven't seen, doesn't take advantage of morphology, ...
- Character-level models were explored extensively in 2016-2018 but simply don't work well — becomes very expensive to represent sequences

Subword Tokenization

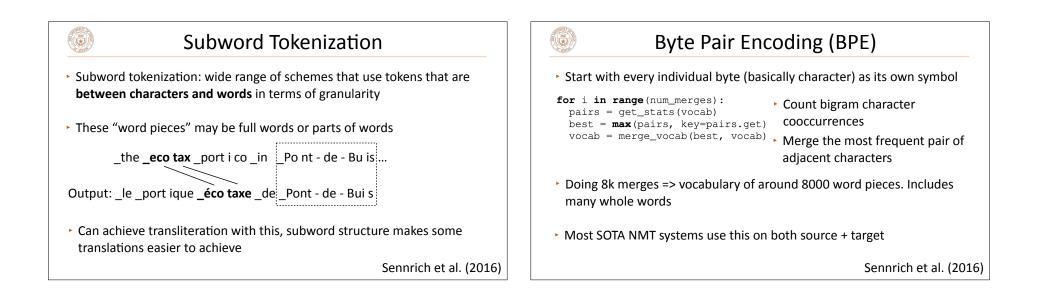
- Subword tokenization: wide range of schemes that use tokens that are between characters and words in terms of granularity
- These "word pieces" may be full words or parts of words

۲

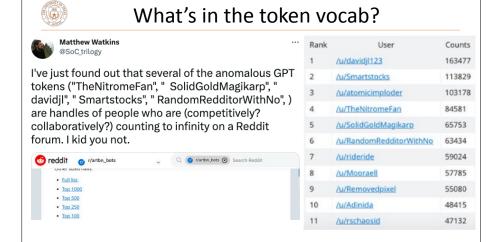
_the _eco tax _port i co _in _Po nt - de - Bu is ...

_ indicates the word piece starting a word (can think of it as the space character).

```
Sennrich et al. (2016)
```



Byte Pair Encoding (BPE)					
Original: BPE: Unigram LM:	furiouslyOriginal: tricycles_furiously(b)BPE: BPE: _t ric y cles_furious lyUnigram LM: _tri cycle s				
Original: BPE: Unigram LM:	Completely preposterous suggestions _Comple t ely _prep ost erous _suggest ions _Complete ly _pre post er ous _suggestion s				
based on a u chunks whic	u see here? es less linguistically plausible units than another technique unigram language model: rather than greedily merge, find th make the sequence look likely under a unigram LM I tokenizer leads to slightly better BERT Bostrom and Durrett (2020)				



Tokenization Today

 All pre-trained models use some kind of subword tokenization with a tuned vocabulary; usually between 50k and 250k pieces (larger number of pieces for multilingual models)

۲

 As a result, classical word embeddings like GloVe are not used. All subword representations are randomly initialized and learned in the Transformer models