
CS371N:	Natural	Language	Processing	
Lecture	17:	Parsing	II

Greg	Durre:

Announcements

‣ Midterm	Thursday:

‣ One	8.5”x11”	notesheet,	double-sided

‣ No	calculators

‣ See	past	exams	for	format

‣ A4	due	today

Recap:	PCFGs§  Write	symbolic	or	logical	rules:	

§  Use	deduc4on	systems	to	prove	parses	from	words	
§  Minimal	grammar	on	“Fed	raises”	sentence:	36	parses	
§  Simple	10-rule	grammar:	592	parses	
§  Real-size	grammar:	many	millions	of	parses	

§  This	scaled	very	badly,	didn’t	yield	broad-coverage	tools	

Grammar (CFG) Lexicon 

ROOT → S 

S → NP VP 

NP → DT NN 

NP → NN NNS 

NN → interest 

NNS → raises 

VBP → interest 

VBZ → raises 

… 

NP → NP PP 

VP → VBP NP 

VP → VBP NP PP 

PP → IN NP 

‣ Context-free	grammar:	symbols	which	rewrite	as	one	or	more	symbols

‣ Lexicon	consists	of	“preterminals”	(POS	tags)	rewriTng	as	terminals	(words)

‣ CFG	is	a	tuple	(N,	T,	S,	R):	N	=	nonterminals,	T	=	terminals,	S	=	start	
symbol	(generally	a	special	ROOT	symbol),	R	=	rules

‣ PCFG:	probabiliTes	associated	with	rewrites,	normalize	by	source	symbol

0.2
0.5

0.3
0.7
0.3
1.0

1.0
1.0

1.0
1.0
1.0
1.0

Recap:	Learning	PCFGs

‣ Maximum	likelihood	PCFG	for	a	set	of	
labeled	trees:	count	and	normalize!	
Same	as	HMMs	/	Naive	Bayes

S	→	NP	VP

NP	→	PRP

NP	→	DT	NN

…

1.0

0.5

0.5



Recap:	CKY

‣ Chart:	T[i,j,X]	=	best	score	for	X	
over	(i,	j)

‣ Base:	T[i,i+1,X]	=	log	P(X	→	wi)

w1

‣ Recurrence:	
T[i,j,X]	=	max					max					T[i,k,X1]	+	T[k,j,X2]	+	log	P(X	→	X1	X2)

w2 w3 w4

T[i,j,X]
NP

VP S …

k r:	X	→	X1	X2

‣ Loop	over	all	split	points	k,	
apply	rules	X	->	Y	Z	to	build	
X	in	every	possible	way

S[0,4]	=>	NP[0,2]	VP[2,4]

Parser	EvaluaTon

Parser	EvaluaTon

‣ View	a	parse	as	a	set	of	labeled	
brackets	/	consTtuents

S(0,3)

NP(0,1)

PRP(0,1)	(but	standard	evaluaTon	
does	not	count	POS	tags)

VP(1,3),	VBD(1,2),	NP(2,3),	PRP(2,3)

S

NP
VP

She saw it

VBD PRPPRP

0									1										2							3

NP

Parser	EvaluaTon
S(0,3),	
NP(0,1),	
VP(1,3),	
NP(2,3),	
PRP(0,1),	
VBD(1,2),	
PRP(2,3)

S

NP

She saw it

NN PRPPRP

0									1										2							3

NP

S(0,3),	
NP(0,2),	
NP(2,3),	
PRP(0,1),	
NN(1,2),	
PRP(2,3)

‣ Precision:	number	of	correct	predicTons	/	number	of	predicTons =	2/3

‣ Recall:	number	of	correct	predicTons	/	number	of	golds =	2/4

‣ F1:	harmonic	mean	of	precision	and	recall	=	(1/2	*	((2/4)-1	+	(2/3)-1))-1

=	0.57	(closer	to	min)

S

NP
VP

She saw it

VBD PRPPRP

0									1										2							3

NP



Results

‣ Standard	dataset	for	English:	Penn	Treebank	(Marcus	et	al.,	1993)

‣ “Vanilla”	PCFG:	~71	F1

‣ Best	PCFGs	for	English:	~90	F1

‣ Other	languages:	results	vary	widely	depending	on	annotaTon	+	
complexity	of	the	grammar

‣ State-of-the-art	discriminaTve	models	(using	unlabeled	data):	95	F1
Dependency	Parsing

Dependency	Parsing

DT NNTOVBDDT NN
the housetoranthe dog

‣ Dependencies:	syntacTc	structure	is	defined	by	relaTons	between	words	
‣ Head	(parent,	governor)	connected	to	dependent	(child,	modifier)	
‣ Each	word	has	exactly	one	parent	except	for	the	ROOT	symbol,	
dependencies	must	form	a	directed	acyclic	graph

ROOT

‣ POS	tags	same	as	before,	usually	run	a	tagger	first	as	preprocessing

Why	are	they	defined	this	way?
‣ ConsTtuency	tests:
‣ SubsTtuTon	by	proform:	the	dog	did	so	[ran	to	the	house],	
he	[the	dog]	ran	to	the	house

‣ Cleqing	(It	was	[to	the	house]	that	the	dog	ran…)

‣ Dependency:	verb	is	the	root	of	the	clause,	everything	else	follows	
from	that

‣ No	noTon	of	a	VP!



Dependency	Parsing

DT

NN

TO

VBD

DT

NN

the

house

to

ran

the

dog

‣ STll	a	noTon	of	hierarchy!	Subtrees	oqen	align	with	consTtuents

Dependency	Parsing

DT NNTOVBDDT NN
the housetoranthe dog

‣ Can	label	dependencies	according	to	syntacTc	funcTon

det

‣ Major	source	of	ambiguity	is	in	the	structure,	so	we	focus	on	that	more	
(labeling	separately	with	a	classifier	works	pre:y	well)

nsubj

pobj

detprep

Dependency	vs.	ConsTtuency:	PP	A:achment

‣ ConsTtuency:	several	rule	producTons	need	to	change

the	children	ate	the	cake	with	a	spoon

‣ Dependency:	one	word	(with)	assigned	a	different	parent

Dependency	vs.	ConsTtuency:	PP	A:achment

‣ More	predicate-argument	focused	view	of	syntax

‣ “What’s	the	main	verb	of	the	sentence?	What	is	its	subject	and	object?”	
—	easier	to	answer	under	dependency	parsing

‣ corenlp.run:	spoon	is	child	instead	of	with.	This	is	just	a	different	formalism



Parsers	Today

‣ Shiq-reduce	parsers:	parsers	that	construct	a	tree	from	a	sentence	via	a	
greedy	sequence	of	operaTons.	similar	to	parsing	algorithms	for	compilers:

Modern	Parsers

I	ate	some	spaghev	bolognese

ROOT

Shiq,	Shiq,	Leq-arc,	Shiq,	Shiq,	Leq-arc,	Shiq,	Right-arc,	Right-arc,	Right-arc
I	<-	ate some	<-	spaghev spaghev	->	

bolognese
ate	->	
spaghev

ROOT	->	
ate

‣ These	parsers	historically	worked	less	well.	But	with	neural	networks,	
they’re	pre:y	good	and	very	fast!

Universal	Dependencies
‣ Annotate	dependencies	with	the	same	representaTon	in	many	languages

h:p://universaldependencies.org/

English

Bulgarian

Czech

Swiss

ReflecTons	on	Structure

‣ What	is	the	role	of	it	now?

‣ To	improve	systems,	do	we	need	to	understand	what	they	do?

‣ Systems	sTll	make	these	kinds	of	judgments,	just	not	explicitly


