
CS371N:	Natural	Language	Processing

Greg	Durre9

Lecture	20:	Alignment,	
Instruc@on	Tuning,	RLHF

Some	slides	from	Yoav	Artzi

Announcements
‣ Midterm	back

‣ A4	grading	underway

‣ A5	due	Thursday

‣ Vote!

Recap:	Chain-of-thought

Pr
om

pt

Input

Test	Input

Label+	
Explana5on

Output

GPT-3

Context:	Christopher	agrees	with	Kevin.	[…]	Q:	Who	hangs	out	with	a	student?

Mary,	because	Mary	hangs	out	with	Danielle	and	Danielle	is	a	student.

Context:	Adam	plays	with	Ellen.	[…]	Q:	Who	plays	with	a	doctor?

greedy	decoding	from	GPT-3

Train	Ex

Train	Ex

Adam,	because	Adam	plays	with	Ellen	and	Ellen	is	a	doctor.

Recap:	Chain-of-thought

Wei	et	al.	(2022)

‣ Can	help	substan@ally	on	
mathema@cal	reasoning

‣ Some	work	to	op@mize	
the	specifics	of	the	
prompts	and	the	
examples

Today

‣ RLHF

‣ Task-oriented	dialogue	systems

‣ Chatbots

‣ Instruc@on	tuning

‣ Alignment:

Alignment

Alignment

Samples	from	GPT-3	
(a	“basic”	LM)

Alignment

Conclusion

Intro

Main	answer

Alignment

‣ Alignment:	general	class	of	methods	for	making	LLMs	produce	useful	output

‣ Some@mes	broken	down	into	“helpfulness”	(responsiveness	to	
prompts,	informa@veness,	correctness)	and	“harmlessness”	(not	
being	biased	or	toxic,	not	responsive	to	harmful	prompts)

‣ Two	main	versions	of	this:

‣ Instruc5on	tuning:	supervised	fine-tuning	on	data	derived	from	many	
NLP	tasks

‣ Reinforcement	learning	from	human	feedback	(RLHF):	RL	to	improve	
human	judgments	of	how	good	the	outputs	are

‣ We	want	to	op@mize	models	for	P(answer	|	prompt,	input),	but	they’re	
learned	on	a	basic	language	modeling	objec@ve

Alignment

Step 0:
Unsupervised pre-training

(tons of data; >1T tokens)

Step 1:
Supervised fine-tuning

on human demos

Step 2:
Fit a reward model

to human preferences
over samplesπSFT

Step 3:
Optimize a policy to

maximize learned rewards

πθ0
πθSFT

πθRL
rϕ

“Write a poem about jazz.”
…

X

Y
(prompts)

(human
demos)

Fine-tune

Fine-tune
Fine-tune

(xi, yi
w, yi

l)
(preference pairs)

Human!

X′

OptimizeSample!

Figure:	Eric	Mitchell	(via	Yoav	Artzi)

Instruc@on	Tuning

Encoder-Decoder	Models:	T5

Raffel	et	al.	(2019)

‣ Pre-training:	not	quite	vanilla	language	modeling,	but	a	“denoising”	
scheme	to	BERT

‣ Input:	text	with	gaps.	Output:	a	series	of	phrases	to	fill	those	gaps.

T5

‣ T5	was	designed	to	be	trained	on	many	tasks	and	map	from	inputs	
to	outputs

‣ Colossal	Cleaned	Common	Crawl:	750	GB	of	text

Raffel	et	al.	(2019)

summariza@on machine	transla@on

Task	Generaliza@on:	T0

Sanh	et	al.	(2021)

‣ T0:	tries	to	deliver	on	the	goal	of	T5	
and	do	many	tasks	with	one	model

‣ Crowdsourced	prompts:	
instruc@ons	for	how	to	do	the	tasks

Task	Generaliza@on

Sanh	et	al.	(2021)

‣ Train:	a	collec@on	
of	tasks	with	
prompts.	This	uses	
exis5ng	labeled	
training	data

‣ Test:	a	new	task	
specified	only	by	a	
new	prompt.	No	
training	data	in	this	
task

Train Test‣ Pre-train:	T5	task

Flan-PaLM

Chung	et	al.	(2022)

‣ Flan-PaLM	(October	20,	2022):	1800	tasks,	540B	parameter	model	fine-tuned	on	
many	tasks	aker	pre-training

Flan-PaLM

Chung	et	al.	(2022)

‣ Flan-PaLM	(October	20,	2022):	1800	tasks,	540B	parameter	model

‣ MMLU	task	(Hendrycks	et	al.,	2020):	57	high	school/college/professional	exams:

Flan-PaLM

Chung	et	al.	(2022)

‣ Flan-PaLM	(October	20,	2022):	1800	tasks,	540B	parameter	model

‣ MMLU	task	(Hendrycks	et	al.,	2020):	57	high	school/college/professional	exams:

Flan-PaLM

Chung	et	al.	(2022)

‣ Human	performance	es@mates	are	~80	on	Big-Bench	(BBH)

Self-Instruct/Alpaca

Ronen	Taori	et	al.	(2023)	Alpaca

‣ Fine-tune	Llama	on	52k	outputs	with	answers	
generated	by	text-davinci-003

Yizhong	Wang	et	al.	(2023)	Self-Instruct

The	Llama	2	Recipenew technique, Ghost Attention (GAtt), which we find helps control dialogue flow over multiple turns
(Section 3.3). See Section 4.2 for safety evaluations on fine-tuned models.

3.1 Supervised Fine-Tuning (SFT)

‰ Prompt: Write a poem to help me remember the first 10 elements on the periodic table, giving each
element its own line.

Response: Hydrogen comes first as element number one.
Helium is second for balloons to have fun!
In third place is Lithium to hold battery charge,
Followed by Beryllium in emeralds small and large.
Boron’s number five to help us keep things clean.
Carbon’s next at six, and it’s found in every gene.
Nitrogen is seven, found in every breath we take,
More than eight (or Oxygen) in atmospheric make.
Number nine is Fluorine, helping polish up our teeth.
Neon gives us glowing signs to read and stand beneath.

‰ Prompt: I want you to roast me. I want you to make it particularly brutal, swearing at me.
Response: I’m sorry, but I cannot comply with that request. Using vulgar language or intentionally

hurting someone’s feelings is never acceptable. Instead of asking for a roast, I suggest
focusing on positive and constructive feedback that can help you grow and improve as an
individual. If you’re looking for comedic relief, there are plenty of other ways to achieve
that without resorting to hurtful language or behavior.

Table 5: SFT annotation — example of a helpfulness (top) and safety (bottom) annotation for SFT, where the
annotator has written both the prompt and its answer.

Getting Started. To bootstrap, we started the SFT stage with publicly available instruction tuning
data (Chung et al., 2022), as utilized previously in Touvron et al. (2023).

Quality Is All You Need. Third-party SFT data is available from many di�erent sources, but we found that
many of these have insu�cient diversity and quality— in particular for aligning LLMs towards dialogue-style
instructions. As a result, we focused first on collecting several thousand examples of high-quality SFT data,
as illustrated in Table 5. By setting aside millions of examples from third-party datasets and using fewer but
higher-quality examples from our own vendor-based annotation e�orts, our results notably improved. These
findings are similar in spirit to Zhou et al. (2023), which also finds that a limited set of clean instruction-tuning
data can be su�cient to reach a high level of quality. We found that SFT annotations in the order of tens of
thousands was enough to achieve a high-quality result. We stopped annotating SFT after collecting a total of
27,540 annotations. Note that we do not include any Meta user data.
We also observed that di�erent annotation platforms and vendors can result in markedly di�erent down-
stream model performance, highlighting the importance of data checks even when using vendors to source
annotations. To validate our data quality, we carefully examined a set of 180 examples, comparing the annota-
tions provided by humans with the samples generated by the model through manual scrutiny. Surprisingly,
we found that the outputs sampled from the resulting SFT model were often competitive with SFT data
handwritten by human annotators, suggesting that we could reprioritize and devote more annotation e�ort
to preference-based annotation for RLHF.

Fine-Tuning Details. For supervised fine-tuning, we use a cosine learning rate schedule with an initial
learning rate of 2⇥ 10�5, a weight decay of 0.1, a batch size of 64, and a sequence length of 4096 tokens.
For the fine-tuning process, each sample consists of a prompt and an answer. To ensure the model sequence
length is properly filled, we concatenate all the prompts and answers from the training set. A special token is
utilized to separate the prompt and answer segments. We utilize an autoregressive objective and zero-out
the loss on tokens from the user prompt, so as a result, we backpropagate only on answer tokens. Finally, we
fine-tune the model for 2 epochs.

9

•Emphasize	data	quality	

•Hire	third-party	annotators	

•Develop	guidelines	that	match	
the	desired	model	behavior	

•Llama	2	focus:	helpfulness	and	
safety	

•Collect	27,540	examples	

•Goal:	less	the	strongest	
possible	model,	more	good	
star@ng	point	for	RLHF

Slide	credit:	Yoav	Artzi

Modern	Methods
‣ MAmmoTH2:	extract	
instruc@on	data	from	the	web	
(using	LLMs	to	reformulate	it)

‣ MAGPIE:	generate	user	
prompts	and	then	the	
responses	from	scratch	using	
an	LLM,	then	filter	them	and	
train	on	that	data

Reinforcement	Learning	from	
Human	Feedback	(RLHF)

RLHF

Ouyang	et	al.	(2022)

‣ Apply	this	approach	to	
op@mizing	outputs	from	
large	language	models

‣ Step	3	(not	shown):	do	RL	
with	this	policy

Learning	Reward	Models

Ouyang	et	al.	(2022)

‣ Input	x:	who	was	the	US	president	during	World	War	II?

‣ Outputs	y+:	Franklin	D.	Roosevelt,	Harry	Truman

‣ Classical	RL:	assign	some	value	+3	to	this	output

‣ Should	we	just	get	humans	to	label	rewards?	What	scale	do	we	use?	
What	score	should	this	get?

Learning	Reward	Models

Ouyang	et	al.	(2022)

‣ Input	x:	who	was	the	US	president	during	World	War	II?

‣ Outputs	y+:	Franklin	D.	Roosevelt,	Harry	Truman
y-:	Herbert	Hoover,	Franklin	D.	Roosevelt,	Harry	Truman

<latexit sha1_base64="vbH1M4Kw6y2EkvcM4Pbna+4QlTM=">AAACuXicfVFda9swFJW9buu8r2x73ItoCCQ0CXbpukIZlO5ljxk0bSFKjSxfN1pl2UhysTH+j2Vv+zeVk2x0abcL4h7OuUe6ujfKBdfG93857pOtp8+eb7/wXr56/eZt5937M50VisGUZSJTFxHVILiEqeFGwEWugKaRgPPo+murn9+A0jyTp6bKYZ7SK8kTzqixVNi57U36ZcgxSXmMyzAYEhFnRg/LsOajoFnmXZv/0HLg9UiDsfd/48Cb9KvLXUx0wRiuLkerQpJSs4iSumwG+AsmiaKsJlDmfdVWD+/rg+afCrb3/pZGG6aw0/XH/jLwQxCsQRetYxJ2fpI4Y0UK0jBBtZ4Ffm7mNVWGMwGNRwoNOWXX9ApmFkqagp7Xy8k3uGeZGCeZskcavGTvO2qaal2lka1sm9SbWks+ps0KkxzOay7zwoBkq4eSQmCT4XaNOOYKmBGVBZQpbnvFbEHtOI1dtmeHEGx++SE42xsHB+NP3/e7xyfrcWyjj2gH9VGAPqNj9A1N0BQx58AhDjiJe+RSd+H+WJW6ztrzAf0Vrr4DTVPRcw==</latexit>

P (y+ � y� | x) = exp(r(y+,x))

exp(r(y+,x)) + exp(r(y�,x))

‣ Bradley-Terry	model:	turns	scores	into	log	probabili@es	of	1	being	
preferred	to	2.	Same	as	logis@c	regression	where	we	classify	pairs	as	1	
>	2	or	2	<	1,	but	we	learn	a	con@nuous	scoring	func@on

Learning	Reward	Models

Ouyang	et	al.	(2022)

‣ Input	x:	who	was	the	US	president	during	World	War	II?

‣ Outputs	y+:	Franklin	D.	Roosevelt,	Harry	Truman
y-:	Herbert	Hoover,	Franklin	D.	Roosevelt,	Harry	Truman

<latexit sha1_base64="vbH1M4Kw6y2EkvcM4Pbna+4QlTM=">AAACuXicfVFda9swFJW9buu8r2x73ItoCCQ0CXbpukIZlO5ljxk0bSFKjSxfN1pl2UhysTH+j2Vv+zeVk2x0abcL4h7OuUe6ujfKBdfG93857pOtp8+eb7/wXr56/eZt5937M50VisGUZSJTFxHVILiEqeFGwEWugKaRgPPo+murn9+A0jyTp6bKYZ7SK8kTzqixVNi57U36ZcgxSXmMyzAYEhFnRg/LsOajoFnmXZv/0HLg9UiDsfd/48Cb9KvLXUx0wRiuLkerQpJSs4iSumwG+AsmiaKsJlDmfdVWD+/rg+afCrb3/pZGG6aw0/XH/jLwQxCsQRetYxJ2fpI4Y0UK0jBBtZ4Ffm7mNVWGMwGNRwoNOWXX9ApmFkqagp7Xy8k3uGeZGCeZskcavGTvO2qaal2lka1sm9SbWks+ps0KkxzOay7zwoBkq4eSQmCT4XaNOOYKmBGVBZQpbnvFbEHtOI1dtmeHEGx++SE42xsHB+NP3/e7xyfrcWyjj2gH9VGAPqNj9A1N0BQx58AhDjiJe+RSd+H+WJW6ztrzAf0Vrr4DTVPRcw==</latexit>

P (y+ � y� | x) = exp(r(y+,x))

exp(r(y+,x)) + exp(r(y�,x))

‣ Outcome:	reward	model	r(y,	x)	returning	real-valued	scores

Lots	of	(y+,y-)	pairs

RLHF

Chris@ano	et	al.	(2017)

‣ Goal:	find	a	policy							(LM	parameters)	that	op@mizes	the	following:

<latexit sha1_base64="B7t35RqOKJc7+iQMnqSmbjxUvD0=">AAADS3icfVJNb9MwGHYyBiN8rIMjF4uqUqK1VYL4uiBNgBASHAqs3aS6jRzHWa05H7IdlCjK/+PChRt/ggsHEOKAk5ZttMArRX7yPO9jv379BhlnUrnuZ8PcurR9+crOVeva9Rs3dzt7tyYyzQWhY5LyVBwHWFLOEjpWTHF6nAmK44DTo+D0WaMfvadCsjQ5VGVGZzE+SVjECFaa8vcM3BvZhc8gilkIC9/rIx6mSvYLv2IDr27Xfb2e0Ylj9VANofV/o9Po5XwfIpkTAsv5YJmJYqwWQVQVtQOfQBQJTCpEi8wWTXb/ou7U/1Sg3ve3NFgzWW/t8/8+LJtzxDqlq+G6SyGGz/2q1URcvXpd1zbKmI/Ugipsl5slowkVCp7nzM/M714cavemxfE7XXfotgE3gbcCXbCKkd/5hMKU5DFNFOFYyqnnZmpWYaEY4bS2UC5phskpPqFTDRMcUzmr2lmoYU8zIYxSob9EwZa96KhwLGUZBzqzqVGuaw35N22aq+jxrGJJliuakOVBUc6hSmEzWDBkghLFSw0wEUzXCskC6+dVevws3QRv/cqbYHJv6D0cPnhzv3vwdNWOHXAH3AU28MAjcABeghEYA2J8ML4Y34zv5kfzq/nD/LlMNY2V5zb4I7a2fwHoYQkf</latexit>

R(x, y) = r(x, y)� �DKL(⇡✓(y | x)k⇡SFT
✓ (y | x))

<latexit sha1_base64="PA5Eh0OH5mYgRmX1QtYeliUCpZ8=">AAADV3icfVJbi9NAFJ4m61rjrdVHXwZLIWHb0oi3F2FREUEfqm67C502TCaT7bCTCzMTSQj5k+LL/hVfdJLW7dqqB8J8fJfMycnxU86kGo8vW4Z5cOPwZvuWdfvO3Xv3O90HM5lkgtApSXgiznwsKWcxnSqmOD1LBcWRz+mpf/Gm1k+/UiFZEp+oIqWLCJ/HLGQEK0153VbUn9i5xyCKWABzzx0gHiRKDnKvZEO3as4jfV7RsWP1UQWh9f+gU+vF8ggimRECi+Vw7UQRVis/LPPKga8gCgUmJaJ5aovaPbiuO9U/Fajf+1sa7oSs/md7SwxgUV8kdindDtdjCjB865WNJqLyw8eqslHKPKRWVGG72O8ZzahQcOtZXoW/vDvR6f2IY23dXqc3Ho2bgvvA3YAe2NTE63xDQUKyiMaKcCzl3B2nalFioRjhtLJQJmmKyQU+p3MNYxxRuSibvahgXzMBDBOhn1jBhr2eKHEkZRH52lm3K3e1mvybNs9U+HJRsjjNFI3J+qIw41AlsF4yGDBBieKFBpgIpnuFZIX1r1Z6FS09BHf3k/fB7MnIfT569ulp7/j1Zhxt8Ag8BjZwwQtwDN6DCZgC0vre+mGYxoFxafw0D8322mq0NpmH4I8yu78AKogJ0A==</latexit>⇡✓

get	high	
reward

stay	close	to	an	ini@al	
SFT	policy

‣ This	is	called	proximal	policy	opImizaIon	(PPO)

‣ Important	to	regularize	towards	the	SFT	policy!	Reward	models	are	not	
stable	enough	to	make	things	work

‣ PPO	has	some	details	in	its	implementa@on:	it’s	an	advantage	actor-criIc	
model,	so	there’s	a	separate	value	func@on	that	gets	learned

RLHF

‣ For	OpenAI,	RLHF	data	is	collected	from	their	API.	Very	different	from	
instruct-tuning	datasets Ouyang	et	al.	(2022)

What	does	RLHF	do?

Singhal,	Goyal,	Xu,	Durre9	(COLM	2024)

‣ Reward	models	trained	on	open	datasets	have	high	correla@ons	with	
length

What	does	RLHF	do?

31

Length	accounts	for	85%	of	
reward	improvement

Overall	reward	
gain	from	PPO	

training

On	older	preference	dataset,	most	reward	op@miza@on	was	a9ributable	to	shiking	
to	longer	outputs!	(Modern	datasets	are	much	bigger	and	this	effect	is	reduced)

Average	bin	reward	
(SFT	model	outputs)

Average	bin	reward	
(RLHF	model	outputs)

WebGPT

Improvement	
within	length-
controlled	bins

(Prasann	Singhal,	Tanya	Goyal,	Jiacheng	Xu,	GD,	COLM	2024	oral	spotlight)

Direct	Preference	Op@miza@on	
(DPO)

Direct	Preference	Op@miza@on	(DPO)

Slide	credit:	Yoav	Artzi

•Adopt	an	alterna@ve	offline	RL	setup	

- Offline	RL	uses	a	sta@c	set	of	trajectories	with	rewards,	rather	than	new	trajectories	
during	learning	(like	we	saw	in	REINFORCE	and	PPO)	

•Restrict	the	reward	to	a	specific	form		

•Combine	the	reward	learning	objec@ve	with	an	RL	objec@ve	to	directly	op@mize	a	policy

Figure 1: DPO optimizes for human preferences while avoiding reinforcement learning. Existing methods
for fine-tuning language models with human feedback first fit a reward model to a dataset of prompts and
human preferences over pairs of responses, and then use RL to find a policy that maximizes the learned reward.
In contrast, DPO directly optimizes for the policy best satisfying the preferences with a simple classification
objective, fitting an implicit reward model whose corresponding optimal policy can be extracted in closed form.

we will show that the RL-based objective used by existing methods can be optimized exactly with a
simple binary cross-entropy objective, greatly simplifying the preference learning pipeline.

At a high level, existing methods instill the desired behaviors into a language model using curated
sets of human preferences representing the types of behaviors that humans find safe and helpful. This
preference learning stage occurs after an initial stage of large-scale unsupervised pre-training on
a large text dataset. While the most straightforward approach to preference learning is supervised
fine-tuning on human demonstrations of high quality responses, the most successful class of methods
is reinforcement learning from human (or AI) feedback (RLHF/RLAIF; [12, 2]). RLHF methods fit
a reward model to a dataset of human preferences and then use RL to optimize a language model
policy to produce responses assigned high reward without drifting excessively far from the original
model. While RLHF produces models with impressive conversational and coding abilities, the RLHF
pipeline is considerably more complex than supervised learning, involving training multiple LMs and
sampling from the LM policy in the loop of training, incurring significant computational costs.

In this paper, we show how to directly optimize a language model to adhere to human preferences,
without explicit reward modeling or reinforcement learning. We propose Direct Preference Optimiza-
tion (DPO), an algorithm that implicitly optimizes the same objective as existing RLHF algorithms
(reward maximization with a KL-divergence constraint) but is simple to implement and straight-
forward to train. Intuitively, the DPO update increases the relative log probability of preferred to
dispreferred responses, but it incorporates a dynamic, per-example importance weight that prevents
the model degeneration that we find occurs with a naive probability ratio objective. Like existing
algorithms, DPO relies on a theoretical preference model (such as the Bradley-Terry model; [5]) that
measures how well a given reward function aligns with empirical preference data. However, while
existing methods use the preference model to define a preference loss to train a reward model and
then train a policy that optimizes the learned reward model, DPO uses a change of variables to define
the preference loss as a function of the policy directly. Given a dataset of human preferences over
model responses, DPO can therefore optimize a policy using a simple binary cross entropy objective,
producing the optimal policy to an implicit reward function fit to the preference data.

Our main contribution is Direct Preference Optimization (DPO), a simple RL-free algorithm for
training language models from preferences. Our experiments show that DPO is at least as effective
as existing methods, including PPO-based RLHF, for learning from preferences in tasks such as
sentiment modulation, summarization, and dialogue, using language models with up to 6B parameters.

2 Related Work

Self-supervised language models of increasing scale learn to complete some tasks zero-shot [31] or
with few-shot prompts [6, 25, 11]. However, their performance on downstream tasks and alignment
with user intent can be significantly improved by fine-tuning on datasets of instructions and human-
written completions [23, 36, 13, 39]. This ‘instruction-tuning’ procedure enables LLMs to generalize
to instructions outside of the instruction-tuning set and generally increase their usability [13]. Despite
the success of instruction tuning, relative human judgments of response quality are often easier to
collect than expert demonstrations, and thus subsequent works have fine-tuned LLMs with datasets of
human preferences, improving proficiency in translation [18], summarization [38, 49], story-telling
[49], and instruction-following [26, 32]. These methods first optimize a neural network reward
function for compatibility with the dataset of preferences under a preference model such as the

2

Direct	Preference	Op@miza@on	(DPO)

Slide	credit:	Yoav	Artzi

•DPO	starts	with	a	very	similar	RL	objec@ve	to	PPO	

	 	

- Where	 	is	the	SFT	policy	before	we	fine-tune	it	with	preference	data

arg maxθ Ex̄∼𝒟,ȳ∼πθ(ȳ|x̄)[r(x̄, ȳ) − βKL[πθ(ȳ | x̄), π
ref

(ȳ | x̄)]]
πref

Maximize	the	expected	
reward	according	to	our	
prompt	data	and	policy

Penalize	for	the	distribu@on	
gewng	further	from	the	pre-

RL	distribu@on	

Direct	Preference	Op@miza@on	(DPO)

Slide	credit:	Yoav	Artzi

•DPO	starts	with	a	very	similar	RL	objec@ve	to	PPO	

	

- Where	 	is	the	SFT	policy	before	we	fine-tune	it	with	preference	data

arg maxθ Ex̄∼𝒟,ȳ∼πθ(ȳ|x̄)[r(x̄, ȳ) − βKL[πθ(ȳ | x̄), π
ref

(ȳ | x̄)]]
πref

π*(ȳ | x̄) = 1
Z(x̄) πref(ȳ | x̄)exp(1

β r(x̄, ȳ))

r(x̄, ȳ) = β log π*(ȳ | x̄)
πref(ȳ | x̄) + β log Z(x̄)

•The	op@mal	policy	takes	this	form	
(according	to	theore@cal	results	from	RL)

•We	can	rearrange	that	to	give:

•Combine	this	with	Bradley-Terry	and…

Direct	Preference	Op@miza@on	(DPO)

Rafailov	et	al.	(2023)

‣ Through	some	manipula@on,	it	can	be	shown	that	the	op@mal	policy	
for	RLHF	sa@sfies	the	preference	model

<latexit sha1_base64="P8LjxrH3pLaUItzw7EEMuk8bdhM=">AAADXnicfVJbb9MwFHYSGCNjrIMXJF4sqkopa6sEAdsL0gQIIcFDgbWbVLeR4zirNeci20GJovxJ3hAv/BSctnSjBY4U+dN3iU9OTpBxJpXrfjdM69btnTu7d+29e/v3D1qHD8YyzQWhI5LyVFwEWFLOEjpSTHF6kQmK44DT8+DqTaOff6VCsjQ5U2VGpzG+TFjECFaa8g8N1Rk6hc8gilkIC9/rIR6mSvYKv2J9r16cR/pc00nX7qAaQvv/wW6jl7MjiGROCCxn/aUTxVjNg6gq6i58BVEkMKkQLTJHNO7eTb1b/1OB+r2/pf5GyO58dq6JHiybi8Qmpdvhekwhhm/9aqGJuPrwsa4dlDEfqTlV2Cm3e0ZjKhS89szW4S/vznR6O9LMa223NZw99Vttd+AuCm4DbwXaYFVDv/UNhSnJY5oowrGUE8/N1LTCQjHCaW2jXNIMkyt8SScaJjimclot1qOGHc2EMEqFfhIFF+zNRIVjKcs40M6ma7mpNeTftEmuopNpxZIsVzQhy4uinEOVwmbXYMgEJYqXGmAimO4VkjnWf1zpjbT1ELzNT94G42cD7+Xgxafn7dPXq3HsgsfgCXCAB47BKXgPhmAEiPHDNEzb3DN/WjvWvnWwtJrGKvMQ/FHWo19FbQoE</latexit>

⇡⇤

‣ We	can	now	learn	the	policy	directly	to	op@mize	the	log	likelihood	of	the	
preference	data	in	a	fashion	that	looks	like	supervised	learning:

ref	=	SFT	policy.	preferred	output	should	be	more	likely	under	
our	learned	policy	than	under	reference,	dispreferred	output	should	be	less	likely

Direct	Preference	Op@miza@on	(DPO)

Slide	credit:	Yoav	Artzi

• The DPO gradient is:

where

∇ℒDPO(θ) =

−βE(x̄,ȳw,ȳl)∼𝒟[σ(̂rθ(x̄, ȳl) − ̂rθ(x̄, ȳw))[∇log πθ(ȳw | x̄) − ∇log πθ(ȳl | x̄)]]

̂r(x̄, ȳ) = β log
πθ(ȳ | x̄)
πref(ȳ | x̄)

 functions like a
“learning rate”
following the

strength of the KL
constraint

β Per-example
weight: higher

weight when the
reward model is

wrong

Increase
likelihood of

preferred example

Decrease
likelihood of
dispreferred

example

Outcome	of	RLHF/DPO
‣ RLHF	produces	an	“aligned”	model	that	should	achieve	high	reward

‣ Best-of-n:	sample	n	responses	from	an	SFT	model,	take	the	best	one	
according	to	the	reward	func@on

‣ Pro:	training-free
‣ Cons:	expensive,	may	not	deviate	far	from	the	ini@al	SFT	model

‣ Preference	tuning:	apply	SFT	on	preferred	outputs
‣ Pro:	simple.	Cons:	doesn’t	use	the	nega@ve	examples

‣ Baselines:

Direct	Preference	Op@miza@on	(DPO)

Rafailov	et	al.	(2023)

‣ Evalua@on:	win	rate	(as	scored	by	an	LLM)

RLHF	in	prac@ce

Touvron	et	al.	(2023)

RLHF	data	for	Llama	2
‣ They	do	5	itera@ons	of	(train,	get	more	preferences,	get	new	reward	model).	
First	3	itera@ons:	just	fine-tuning	best-of-n,	then	they	used	PPO

‣ Current	approaches:	many	papers	exploring	versions	with	ac@ve	data	
collec@on	(e.g.,	tune	with	DPO	->	collect	preferences	->	keep	tuning	…)

Evalua@ng	LLMs

Death	of	Benchmarks

Goyal,	Li,	Durre9	(2023)

‣ Many	classic	tasks	and	metrics	were	saturated	when	ChatGPT	came	out	

‣ “Tests”	like	MMLU	are	very	ar@ficial,	and	we	want	to	judge	long-form	
responses

LLM-as-a-Judge

Hamish	Ivison	et	al.	(2024)

‣ Get	responses	from	two	models,	ask	GPT-4	which	one	is	be9er

‣ “Win	rate”:	if	you	compare	model	A	vs.	model	B,	what	frac@on	of	
the	@me	does	it	win?

‣ Some@mes	use	win	rate	against	a	fixed	target	(e.g.,	GPT-3.5),	like	on	
the	next	slide

DPO/PPO	Comparison

Hamish	Ivison	et	al.	(2024)

Data	sewngs

Hamish	Ivison	et	al.	(2024)

‣ Upvotes/downvotes	on	StackExchange	(synthe@c	
dataset	of	human	preferences)

‣ Human	preferences	(discussed	on	next	slide)

‣ GPT-4	preferences	over	a	big	dataset

‣ GPT-4	preferences	over	a	big	dataset

‣ Human	annotated	data,	but	a	bit	older

Chatbot	Arena:	Elo	Rankings

Chatbot	Arena:	Elo	Rankings

‣ Accepted	as	one	of	the	
premiere	rankings	for	
LLMs

‣ Style	control	was	
introduced	as	it	was	
believed	that	the	
“style”	of	responses	
had	a	big	effect

Takeaways

‣ Instruc@on-tuning	and	RLHF	are	two	procedures	that	take	LMs	to	
the	next	level	—	these	models	work	drama@cally	be9er	than	basic	
GPT-3

‣ These	are	the	founda@on	of	modern	chatbots	(along	with	lots	of	
pre-training	data),	very	exci@ng	capabili@es	in	these	LLM	agents

‣ Evalua@ng	where	these	models	are	is	tough,	requires	human	
interven@on	or	trust	that	LLMs	are	doing	reasonable	things…

