CS371N: Natural Language Processing

Lecture 20: Alignment, Instruction Tuning, RLHF

Some slides from Yoav Artzi

Mignment We want to optimize models for P(answer | prompt, input), but they're learned on a basic language modeling objective Alignment: general class of methods for making LLMs produce useful output Sometimes broken down into "helpfulness" (responsiveness to prompts, informativeness, correctness) and "harmlessness" (not being biased or toxic, not responsive to harmful prompts)

- Two main versions of this:
 - Instruction tuning: supervised fine-tuning on data derived from many NLP tasks
 - Reinforcement learning from human feedback (RLHF): RL to improve human judgments of how good the outputs are

()			T5				
Number of tokens	Repeats	GLUE	CNNDM	EnDe	EnFr	EnRo	
Full dataset	0	83.28	19.24	26.98	39.82	27.65	
2^{29}	64	82.87	19.19	26.83	39.74	27.63	
2^{27}	256	82.62	19.20	27.02	39.71	27.33	
2^{25}	1,024	79.55	18.57	26.38	39.56	26.80	
2^{23}	4,096	76.34	18.33	26.37	38.84	25.81	
			summarization	machine translat			

- Colossal Cleaned Common Crawl: 750 GB of text
- T5 was designed to be trained on many tasks and map from inputs to outputs

Raffel et al. (2019)

Flan-PaLM	
Flan-PaLM (October 20, 2022): 1800 tasks, 540B parameter mo	odel
 MMLU task (Hendrycks et al., 2020): 57 high school/college/pr When you drop a ball from rest it accelerates downward at 9.8 m/s². If you in downward assuming no air resistance its acceleration immediately after leavin (A) 9.8 m/s² (B) more than 9.8 m/s² (C) less than 9.8 m/s² (D) Cannot say unless the speed of throw is given. 	ofessional exams: stead throw it ng your hand is
S In the complex z-plane, the set of points satisfying the equation $z^2 = z ^2$ is a (A) pair of points (B) circle (C) half-line (D) line	×××
Figure 4: Examples from the Conceptual Physics and College Mathematics	STEM tasks. Chung et al. (2022)

Flan-PaLM

Flan-PaLM (October 20, 2022): 1800 tasks, 540B parameter model

۲

MMLU task (Hendrycks et al., 2020): 57 high school/college/professional exams:

-	Random	2 5.0
-	Average human rater	34. 5
May 2020	GPT-3 5-shot	43.9
Mar. 2022	Chinchilla 5-shot	67.6
Apr. 2022	PaLM 5-shot	69.3
	Flan-PaLM 5-shot	72.2
Oct. 2022	Flan-PaLM 5-shot: CoT + SC	75.2
-	Average human expert	89.8

				MM	LU	BE	H
Model	Finetuning Mixtures	Tasks	Norm. avg.	Direct	СоТ	Direct	Co
5 40B	None (no finetuning)	0	49.1	71.3	62.9	49.1	63.7
	CoT	9	52.6 (+3.5)	68.8	64.8	50.5	61.1
	CoT, Muffin	89	57.0 (+7.9)	71.8	66.7	5 6.7	64.0
	CoT, Muffin, T0-SF	282	57.5 (+8.4)	72.9	<u>68.2</u>	5 7.3	64.0
	CoT, Muffin, T0-SF, NIV2	1,836	<u>58.5 (+9.4)</u>	73.2	68.1	<u>58.8</u>	65.6
lumai	n performance estimat	es are	~80 on Big-Bi	ench (B	BH)		

🛞 The	e Llama 2 Recipe	Mod	lern Methods
 Emphasize data quality Hire third-party annotators Develop guidelines that match the desired model behavior 	➤ Prompt: Write a poem to help me remember the first 10 elements on the periodic table, giving each element its own line. Response: Hydrogen comes first as element number one. Helium is second for balloons to have fun! In third place is Lithium to hold battery charge, Followed by Beryllium in emeradias small and large. Boron's number five to help us keep things clean. Carbon's next as is, and if's lound in every gene. Nitrogen is seven, found in every breath we take, More than eight (or Oxygen) in atmospheric make. Number nine is Fluorine, helping polish up our teeth. Neon gives us glowing signs to read and stand beneath.	 MAmmoTH2: extract instruction data from the web (using LLMs to reformulate it) 	Recall Extract Refine Web Raw Doc Extracted QA WebInstruct: 10M instruction data from the web Diverse, high quality and large-scale
 Llama 2 focus: helpfulness and safety Collect 27,540 examples Goal: less the strongest possible model, more good starting point for RLHF 	 ▶ Prompt: I want you to roast me. I want you to make it particularly brutal, swearing at me. Response: I'm sorry but I cannot comply with hat request. Linguage or intentionally hutting contene's feelings is never acceptable. Instead of solving fore roast, I suggest focusing on possible and constructive feedback that can help you grow and improve as an individual. If you're looking for comodic relief, there are plenty of other ways to achieve that without resorting to hurtful anguage or behavior. Table 5: STF anotation — example of a helpfulness (top) and safety (bottom) annotation for SFT, where the annotator has written both the prompt and its answer. 	 MAGPIE: generate user prompts and then the responses from scratch using an LLM, then filter them and train on that data 	Add Domain-Specific System Prompts (Optional) Step 1 (start_heade_id)>user (end_heade_id)> Step 2 What materials should i use to build nest? What materials should i use to build nest? Cleot_id]><[start_heade_id]> what materials should i use to build nest? Cleot_id]> <licleot_id]></licleot_id]> Cleot_id]> Cleot_id]
	Slide credit: Yoav Artzi		MAGPIE Raw

Use-case(%)Use-casePromptGeneration45.6%BrainstormingList five ideas for how to regain enthusiasm for my careerBrainstorming11.2%GenerationWrite a short story where a bear goes to the beach, makes friends with a seal, and then returns home.Chat8.4%Rewrite6.6%Summarization4.2%RewriteThis is the summary of a Broadway play: """Classification3.5%{summary}Other3.5%{summary}Closed QA2.6%"""Extract1.9%"""	Table 1: Distribut case categories from prompt dataset.	tion of use om our API	Table 2: Illustrati are fictional exan in Appendix A.2	ve prompts from our API prompt dataset. These more stamples inspired by real usage—see more examples .1.	-
Generation45.6% Open QABrainstormingList five ideas for how to regain enthusiasm for my careerBrainstorming11.2% ChatGenerationWrite a short story where a bear goes to the beach, makes friends with a seal, and then returns home.Chat8.4% ChatRewrite6.6% GenerationSummarization4.2% ClassificationRewriteThis is the summary of a Broadway play: """Other3.5% Closed QA2.6% 1.9%"""Extract1.9%"""This is the outline of the commercial for that play: """	Use-case	(%)	Use-case	Prompt	
Brainstorming 11.2% Generation Write a short story where a bear goes to the beach, makes friends with a seal, and then returns home. Chat 8.4% makes friends with a seal, and then returns home. Rewrite 6.6% Rewrite This is the summary of a Broadway play: Classification 3.5% {summary} Other 3.5% {summary} Extract 1.9% """	Generation Open QA	45.6% 12.4%	Brainstorming	List five ideas for how to regain enthusiasm for my career	
Summarization4.2%RewriteThis is the summary of a Broadway play:Classification3.5%"""Other3.5%{summary}Closed QA2.6%"""Extract1.9%"""	Brainstorming Chat Rewrite	11.2% 8.4% 6.6%	Generation	Write a short story where a bear goes to the beach, makes friends with a seal, and then returns home.	
Other 3.5% {summary} Closed QA 2.6% """ Extract 1.9% """	Summarization Classification	4.2% 3.5%	Rewrite	This is the summary of a Broadway play:	
Extract 1.9% """ """	Other Closed QA	3.5% 2.6%		{summary}	
	Extract	1.9%		This is the outline of the commercial for that play:	
	instruct-tu	ning datase	ets	Ouyang et al. (2022)	

COMIT?

$$\widehat{\text{OPO}} \quad \text{Direct Preference Optimization (DPO)} \\ \text{-POO starts with a very similar RL objective to PPO} \\ & \arg \max_{\theta} E_{\bar{x} \sim \emptyset, \bar{y} \sim \pi_{\theta}(\bar{y}|\bar{x})} \left[r(\bar{x}, \bar{y}) - \beta \text{KL}[\pi_{\theta}(\bar{y}|\bar{x}), \pi_{\text{ref}}(\bar{y}|\bar{x})] \right] \\ \text{- Where } \pi_{\text{ref}} \text{ is the SFT policy before we fine-tune it with preference data} \\ \text{- The optimal policy takes this form} (according to theoretical results from RL)} \quad \pi^*(\bar{y}|\bar{x}) = \frac{1}{Z(\bar{x})}\pi_{\text{ref}}(\bar{y}|\bar{x}) \exp\left(\frac{1}{\beta}r(\bar{x},\bar{y})\right) \\ \text{- We can rearrange that to give:} \quad r(\bar{x}, \bar{y}) = \beta \log \frac{\pi^*(\bar{y}|\bar{x})}{\pi_{\text{ref}}(\bar{y}|\bar{x})} + \beta \log Z(\bar{x}) \\ \text{- Combine this with Bradley-Terry and...} \end{aligned}$$

Outcome of RLHF/DPO

- RLHF produces an "aligned" model that should achieve high reward
- Baselines:
 - Best-of-n: sample n responses from an SFT model, take the best one according to the reward function
 - Pro: training-free
 - Cons: expensive, may not deviate far from the initial SFT model
 - Preference tuning: apply SFT on preferred outputs
 - Pro: simple. Cons: doesn't use the negative examples

Anthropic Helpful 122,387 3.0 251.5 17.7 88.4 Anthropic Harmless 43,966 3.0 152.5 15.7 46.4 OpenAI Summarize 176,625 1.0 371.1 336.0 35.1 OpenAI WebGPT 13,333 1.0 237.2 48.3 188.9 StackExchange 1,038,480 1.0 440.2 200.1 240.2 Stanford SHP 74,882 1.0 338.3 199.5 138.8 Synthetic GPT-J 33,139 1.0 123.3 13.0 110.3 Meta (Safety & Helpfulness) 1,418,091 3.9 798.5 31.4 234.1 Total 2,919,326 1.6 595.7 108.2 216.9 RLHF data for Llama 2 Image for Llama 2	Anthropic Helpful				minipi	in Response
Anthropic Harmless 43,966 3.0 152.5 15.7 46.4 OpenAI Summarize 176,625 1.0 371.1 336.0 35.1 OpenAI WebGPT 13,333 1.0 237.2 48.3 188.9 StackExchange 1,038,480 1.0 440.2 200.1 240.2 Stanford SHP 74,882 1.0 338.3 199.5 138.8 Synthetic GPT-J 33,139 1.0 123.3 13.0 110.3 Meta (Safety & Helpfulness) 1,418,091 3.9 798.5 31.4 234.1 Total 2,919,326 1.6 595.7 108.2 216.9 RLHF data for Llama 2		122,387	3.0	251.5	17.7	88.4
OpenAl Summarize 176,625 1.0 371.1 336.0 35.1 OpenAl WebGPT 13,333 1.0 237.2 48.3 188.9 StackExchange 1,038,480 1.0 240.2 200.1 240.2 StackExchange 1,038,480 1.0 440.2 200.1 240.2 StackExchange 1,038,480 1.0 123.3 13.0 110.3 Meta (Safety & Helpfulness) 1,418,091 3.9 798.5 31.4 234.1 Total 2,919,326 1.6 595.7 108.2 216.9 RLHF data for Llama 2 Image for Llama 2 Image for Llama 2 Image for Llama 2 Image for Llama 2	Anthropic Harmless	43,966	3.0	152.5	15.7	46.4
OpenAI WebGPT 13,333 1.0 237.2 48.3 188.9 StackExchange 1,038,480 1.0 440.2 200.1 240.2 Stanford SHP 74,882 1.0 338.3 199.5 138.8 Synthetic GPT-J 33,139 1.0 123.3 13.0 110.3 Meta (Safety & Helpfulness) 1,418,091 3.9 798.5 31.4 234.1 Total 2,919,326 1.6 595.7 108.2 216.9 RLHF data for Llama 2	DpenAl Summarize	176,625	1.0	371.1	336.0	35.1
StackExchange 1,038,480 1.0 440.2 200.1 240.2 Stanford SHP 74,882 1.0 338.3 199.5 138.8 Synthetic GPT-J 33,139 1.0 123.3 13.0 110.3 Meta (Safety & Helpfulness) 1,418,091 3.9 798.5 31.4 234.1 Total 2,919,326 1.6 595.7 108.2 216.9 RLHF data for Llama 2	DpenAI WebGPT	13,333	1.0	237.2	48.3	188.9
Stanford SHP 74,882 1.0 338.3 199.5 138.8 Synthetic GPT-J 33,139 1.0 123.3 13.0 110.3 Meta (Safety & Helpfulness) 1,418,091 3.9 798.5 31.4 234.1 Total 2,919,326 1.6 595.7 108.2 216.9 RLHF data for Llama 2	tackExchange	1,038,480	1.0	440.2	200.1	240.2
Synthetic GPT-J 33,139 1.0 123.3 13.0 110.3 Meta (Safety & Helpfulness) 1,418,091 3.9 798.5 31.4 234.1 Total 2,919,326 1.6 595.7 108.2 216.9 RLHF data for Llama 2	tanford SHP	74,882	1.0	338.3	199.5	138.8
Meta (Safety & Helpfulness) 1,418,091 3.9 798.5 31.4 234.1 Total 2,919,326 1.6 595.7 108.2 216.9 RLHF data for Llama 2	ynthetic GPT-J	33,139	1.0	123.3	13.0	110.3
Total 2,919,326 1.6 595.7 108.2 216.9 RLHF data for Llama 2	/leta (Safety & Helpfulness	s) 1,418,091	3.9	798. 5	31.4	234.1
RLHF data for Llama 2	otal	2,919,326	1.6	5 9 5.7	108.2	216.9
		RLHF	data for Lla	ama 2		
v do 5 iterations of (train, get more preferences, get new reward	do 5 iterations o	of (train, g	et more r	reference	s. get new	reward ı
		- (e)			-, 8	
3 iterations: just fine-tuning best-of-n, then they used PPO	R Iterations Inst	tine-tunir	ig best-of	-n. then th	hev used F	PP()

	LLM-as-a-Judge
Get responses f	from two models, ask GPT-4 which one is better
"Win rate": if yo the time does if	ou compare model A vs. model B, what fraction of t win?
 Sometimes use the next slide 	win rate against a fixed target (e.g., GPT-3.5), like on
	Hamish Ivison et al. (2024)

Source

Data / Model	Alg.	Factuality	Reasoning	Coding	Truthfulness	Safety	Inst. Foll.	Average
Llama 2 base	-	52.0	37.0	30.7	32.7	32.7	-	-
TÜLU 2 (SFT)	-	55.4	47.8	45.1	56.6	91.8	44.2	56.8
Steel-Enchance	DPO	55.3	47.8	42.4	56.2	92.0	46.7	56.7
StackExchange	PPO	55.1	47.8	46.4	54.2	92.6	47.4	57.3
Chat Arana (2022)	DPO	55.4	50.2	45.9	58.5	67.3	50.8	54.7
tackExchange hatArena (2023) IH-RLHF	PPO	55.2	49.2	46.4	55.8	79.4	49.7	55.9
HH-RLHF	DPO	55.2	47.6	44.2	60.0	93.4	46.6	57.8
HH-KLHF	PPO	54.9	48.6	45.9	58.0	56.2 92.0 46.7 54.2 92.6 47.4 35.5 57.8 79.4 49.7 36.6 58.0 92.8 47.0 36.6 58.0 92.8 47.0 36.6 68.1 93.3 48.4 36.1 92.6 47.4	57.9	
N	DPO	55.6	45.8	39.0	68.1	93.3	48.4	58.4
Inectar	PPO	55.2	51.2	45.6	60.1	92.6	47.4	58.7
Lilter E - dh - dh (EC)	DPO	55.3	50.9	45.9	69.3	91.9	52.8	61.0
UltraFeedback (FG)	PPO	56.0	52.0	47.7	71.5	91.8	54.4	62.2
Avg. Δ b/w PPO &	DPO	-0.1	+1.3	+2.9	-2.5	+2.3	+0.1	+0.7

Table 2: **DPO vs PPO:** Average performance of 13B models trained using DPO and PPO across different datasets, along with the performance difference between DPO and PPO (Δ). Blue indicates improvements over the SFT baseline, orange degradations. All datasets are downsampled to 60,908 Hamish lvison et al. (2024)

	Data settings		Chatbot A	ren	a: Elo Rankings
StackExchange	 Upvotes/downvotes on StackExchange (synthetic dataset of human preferences) 	Chat now!	descriptions of 73 models		
ChatArena (2023)	 Human preferences (discussed on next slide) 	动 Model A	What is direct preference op	timization?	What is direct preference optimization
HH-RLHF	 Human annotated data, but a bit older 	Direct preferen computational This approach research, and t	nce optimization is a method used in decision making and I models to prioritize or select options based on explicit pre Is particularly relevant in fields like machine learning, oper behavioral sciences. The basic idea is to optimize decisions	ferences. ations directly	Direct preference optimization (DPO) is a class of reinforcement learning algorithms that learn reward functions directly from human feedback, rather than relying on manually designed reward functions. This is particularly useful in situations where specifying a reward function is difficult or impossible, such as complex tasks with
Nectar	 GPT-4 preferences over a big dataset 	according to th optimizing a su Here's a breakc 1. Preference C	te preferences of decision-makers or stakeholders, rather th urrogate measure or a proxy variable. down of how direct preference optimization typically work: Collection: Preferences are gathered from decision-makers	nan s: or users.	subjective goals or tasks where the desired behavior is difficult to quantify. Here's a breakdown of key aspects of DPO: • The Problem with Traditional Reward Functions: In traditional reinforcement learning (RL), an agent learns to maximize a pre-defined reward function. However,
UltraFeedback (FG)	 GPT-4 preferences over a big dataset 	These preferen expressed in di 2. Modeling Pro statistical or m	ces can be about various alternatives or options and can b ifferent forms, such as rankings, ratings, or pairwise compa references: The collected preference data is then modeled (achine learning methods. This might involve estimating ut	e risons. using ility	crafting these reward functions can be challenging. They might require extensive feature engineering, lead to reward hacking (where the agent exploits loopholes in the reward function to achieve high reward without exhibiting the desired behavior), or simply fail to capture the nuances of the true objective.
	Hamish Ivison et al. (2024)				

Chatbot Arena: Elo Rankings									
Accepted as one of the	Rank∗ (UB) ▲	Rank (StyleCtrl)	Model	Arena Score	95% CI 🔺	Votes 🔺			
premiere rankings for	1	1	ChatGPT-40-latest (2024-09-03)	1340	+4/-3	33743			
LLMs	3	6	o1-mini	1308	+4/-4	23128			
	3	4	Gemini-1.5-Pro-002	1303	+4/-4	15736			
Style control was	4	4	Gemini-1.5-Pro-Exp-0827	1299	+4/-3	32385			
, introduced as it was	6	9	Grok-2-08-13	1290	+3/-3	40873			
	6	3	Claude 3.5 Sonnet (20241022)	1286	+6/-6	7284			
believed that the	6	11	Yi-Lightning	1285	+4/-4	20973			
"style" of responses	6	4	GPT-40-2024-05-13	1285	+3/-3	102960			
had a hig effect	10	15	GLM-4-Plus	1275	+4/-4	19922			
fiau a big effect	10	18	GPT-40-mini-2024-07-18	1273	+4/-3	42661			
	10	19	Gemini-1.5-Flash-002	1272	+5/-6	12379			
	10	26	Llama-3.1-Nemotron-70b-Instruct	1271	+5/-7	6228			
	10	14	Gemini-1.5-Flash-Exp-0827	1269	+4/-4	25503			
	11	6	Claude 3.5 Sonnet (20240620)	1268	+3/-3	81086			

۲

Takeaways

٠

- Instruction-tuning and RLHF are two procedures that take LMs to the next level — these models work dramatically better than basic GPT-3
- These are the foundation of modern chatbots (along with lots of pre-training data), very exciting capabilities in these LLM agents
- Evaluating where these models are is tough, requires human intervention or trust that LLMs are doing reasonable things...