

Recap

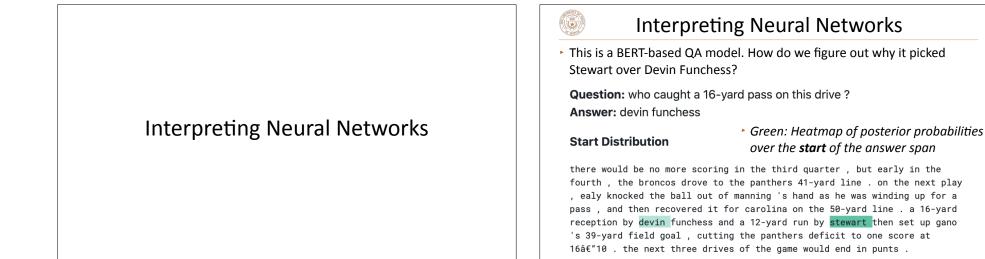
- Dataset artifacts / spurious correlations
- Single-word correlations in NLI: hypothesis contains not -> contradiction
- Answer type bias in QA: where -> return any reasonable location
- Various debiasing techniques:

- Understand what examples are contributing to the bias
- Reweighting training data to remove those examples
- Data augmentation (not discussed)

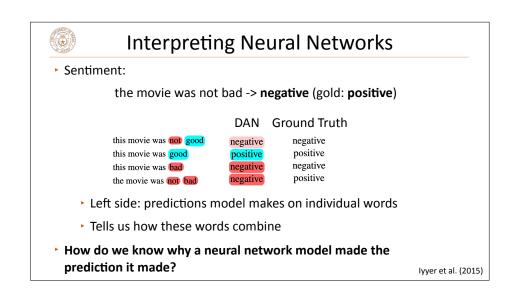
۲

Today

- Why is it so surprising when these model failures happen? Why can't we just look at why they make their predictions?
- Interpreting neural networks: what does this mean and why should we care?
- Local explanations: erasure techniques
- Gradient-based methods
- Evaluating explanations



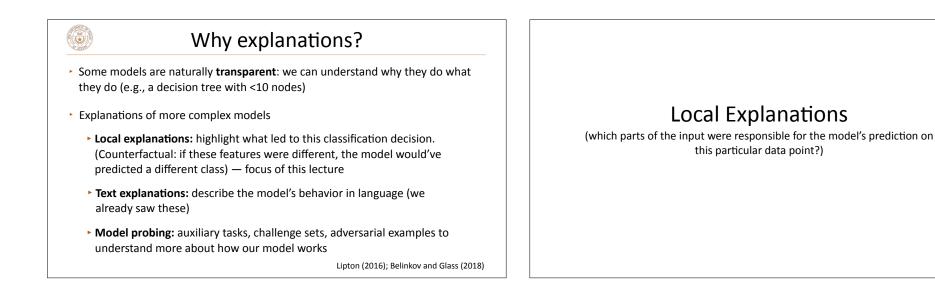
٢

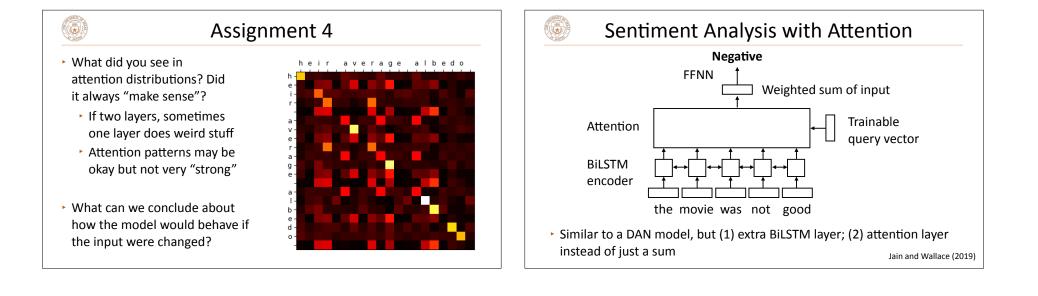


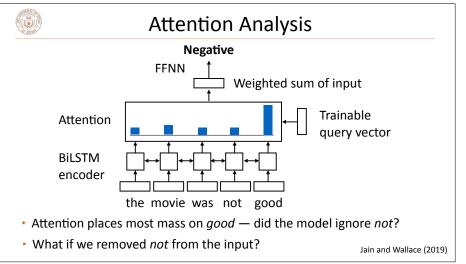
Why explanations?

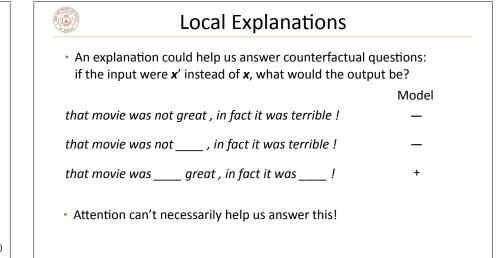
- Trust: if we see that models are behaving in human-like ways and making human-like mistakes, we might be more likely to trust them and deploy them
- Causality: if our classifier predicts class y because of input feature x, does that tell us that x causes y? Not necessarily, but it might be helpful to know
- Informativeness: more information may be useful (e.g., predicting a disease diagnosis isn't that useful without knowing more about the patient's situation)
- Fairness: ensure that predictions are non-discriminatory

Lipton (2016)









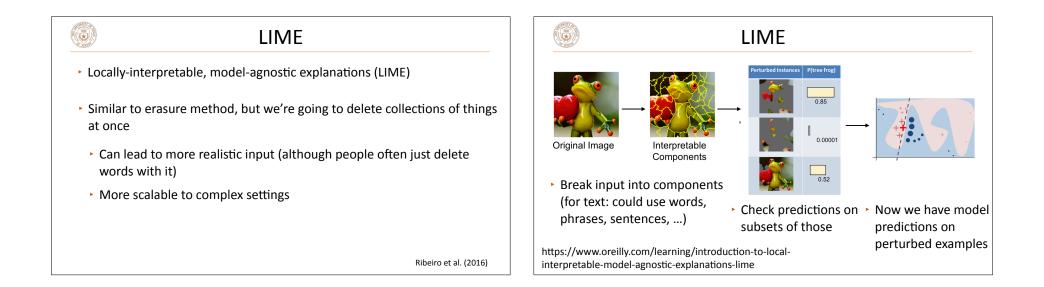
	Erasure Meth	od	
Delete each word one by and one and see how prediction prob changes			
that movie was	not great , in fact it was terr	ible! —	prob = 0.97
movie was	not great , in fact it was terri	ible! —	prob = 0.97
that was	not great , in fact it was terri	ble ! —	• prob = 0.98
that movie	_not great, in fact it was terr	ible! —	• prob = 0.97
that movie was	great, in fact it was terr	ible! —	prob = <mark>0.8</mark>
that movie was	not, in fact it was terri	ble! —	• prob = <mark>0.99</mark>
			· prob

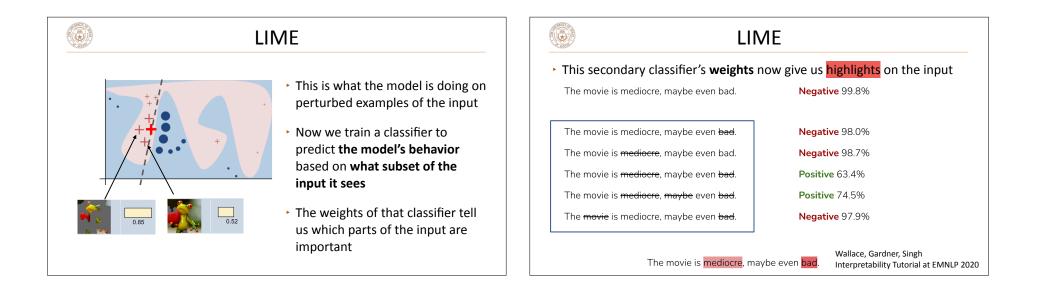
Erasure Method

 Output: highlights of the input based on how strongly each word affects the output

that movie was not great , in fact it was terrible !

- not contributed to predicting the negative class (removing it made it less negative), great contributed to predicting the positive class (removing it made it more negative)
- Will this work well?
 - Inputs are now unnatural, model may behave in "weird" ways
 - Saturation: if there are two features that each contribute to negative predictions, removing each one individually may not do much



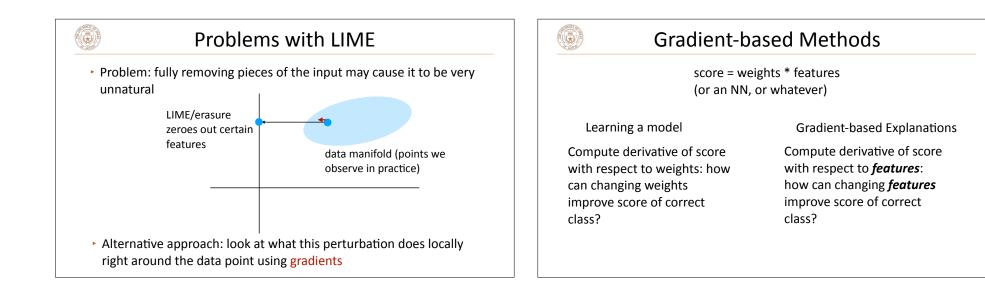


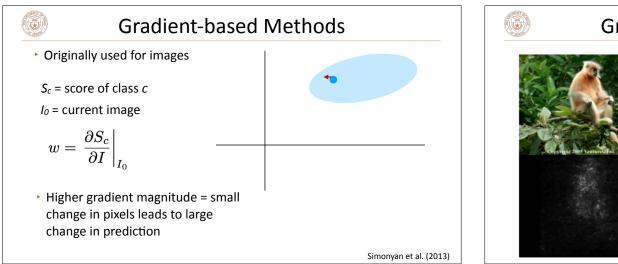
Problems with LIME

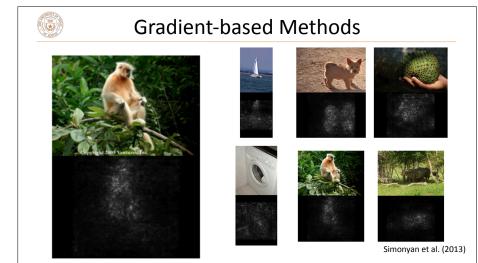
- Lots of moving parts here: what perturbations to use? what model to train? etc.
- Expensive to call the model all these times

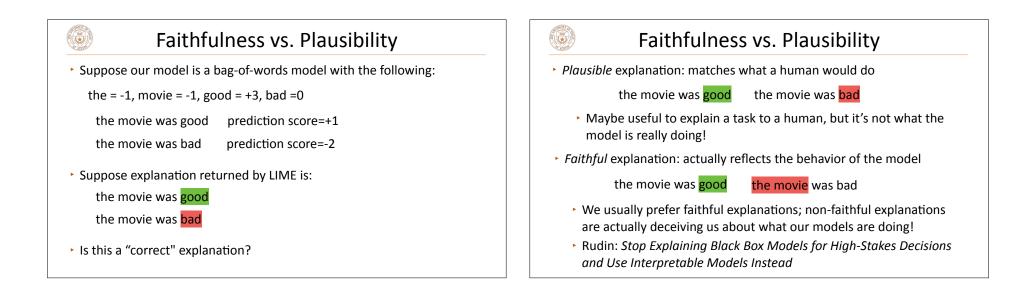
Linear assumption about interactions may not be reliable

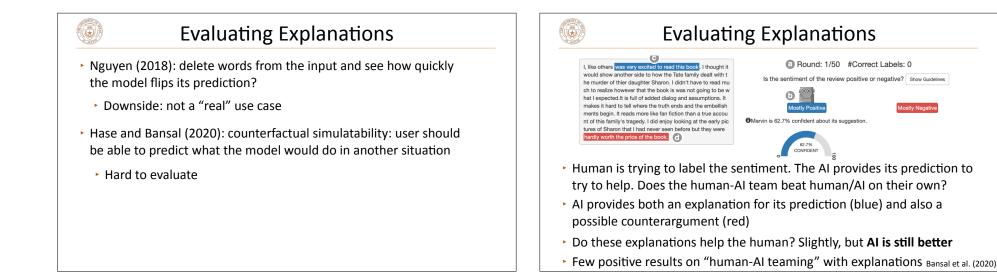
Gradient-based Methods

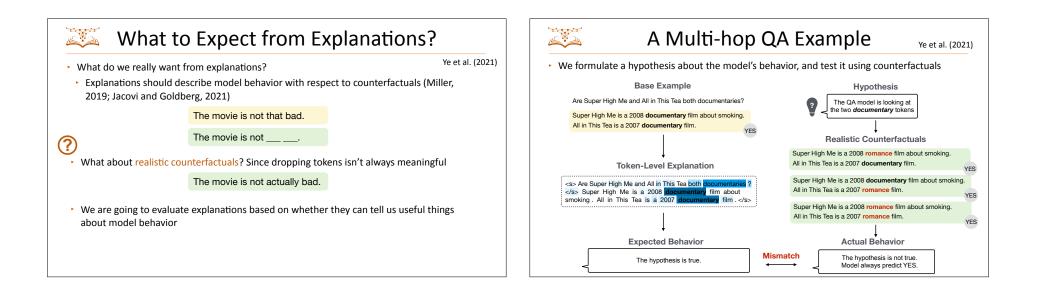


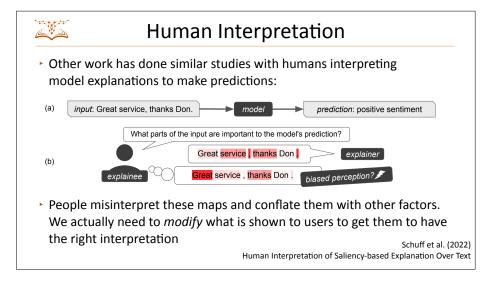












Packages

- AllenNLP Interpret: https://allennlp.org/interpret
- Captum (Facebook): https://captum.ai/

۲

- LIT (Google): https://ai.googleblog.com/2020/11/the-language-interpretability-tool-lit.html
- Various pros and cons to the different frameworks
- > You can use these in your final project to analyze your model's behavior

Takeaways

Many other ways to do explanation:

۲

- Probing tasks: do vectors capture information about part-of-speech tags?
- Diagnostic test sets ("unit tests" for models). E.g., do LMs have "theoryof-mind"? Are LMs biased? (Sometimes hard to generalize these results)
- Building models that are explicitly interpretable (decision trees)
- Lots of uncertainty about which of these approaches is best

Wallace, Gardner, Singh Interpretability Tutorial at EMNLP 2020