CS371N: Natural Language Processing

Lecture 24: Multimodality, Language Grounding

Greg Durrett

McMahan and Stone (2015)

Announcements

FP check-ins due Friday

- deeper than a system of abstract symbols?
- Multimodality
- Language and vision models
- Language and manipulation

Today's Lecture

Language grounding: how do we understand the meaning of language

Classic Grounding

- How do we represent language in our models?
- How did we learn these representations? What do the vectors "mean"?

Language Grounding

contextualized

- Harnad defines a "symbol system": we have symbols (e.g., strings) manipulated on the basis of rules, and these symbols ultimately have "semantic interpretation"
 - "Fodor (1980) and Pylyshyn (1980, 1984)...emphasize that the symbolic level (for them, the mental level) is a natural functional level of its own, with ruleful regularities that are independent of their specific physical realizations"
- Harnad challenges the idea that fully symbolic approaches can work well.
- Argues that "horse" is something that should be understood bottom-up through grounding. "Zebra" = "horse" + "stripes" could emerge this way, but he claims it cannot through a top-down symbolic system
- What does it mean to "understand" the symbols that get manipulated?

Language Grounding

Harnad (1990) The Symbol Grounding Problem

- rules and looks things up in the dictionaries to produce the translation.
- Does the person understand Chinese? Does the room? (the "system"?)

The interpretation will not be intrinsic to the symbol system itself: It will be parasitic on the fact that the symbols have meaning for us, in exactly the same way that the meanings of the symbols in a book are not intrinsic, but derive from the meanings in our heads.

Searle's Chinese Room

Suppose we have someone in a room with a long list of rules, dictionaries, etc. for how to translate Chinese into English. A Chinese string is passed into the room and an English string comes out. The person is not a speaker of Chinese, but merely follows the

Searle argues that (a) the room is like an AI system producing Chinese translations; (b) the operator in the room (the AI) does not "understand" Chinese. Harnad summarizes :

Searle (1980)

- Bender and Koller separate form and meaning. Meaning = communicative intent. The role of the speaker/listener are crucial in language, LMs lack the underlying intent
- They propose the "octopus" experiment to show how form alone can fail.

An octopus is eavesdropping on a conversation between A and B (using deep-sea communication cables). Suddenly, the octopus decides to cut the cable and impersonate B.

A has an emergency and asks how to construct something with sticks to fend off a bear. The octopus can't help because it can't simulate this novel situation.

Language Grounding

Bender and Koller (2020) *Climbing towards NLU*

- x = 2We can't necessarily learn semantics y = x + 2from predicting next characters alone print(y) without execution. Consider training on:
- However, assertion statements are x = 2sufficient to teach us some semantics! y = x + 2assert(y == 4)(but this can still break down)
- For language: similar argument. Assume people say true things. Consider saying a pair of sentences x_1 , x_2 ; given enough examples, the fact that x₂ should not be contradicted by x₁ tells us something

Counterarguments

Merrill et al. (2021) Provable Limitations of Acquiring Meaning from Ungrounded Form Merrill et al. (2022) Entailment Semantics can be Extracted from an Ideal Language Model

- Lots of philosophy about these models!
- Nevertheless, it seems there's a hierarchy in terms of their understanding:
 - < LM fine-tuned on supervised data pure LM < vision+language LM < vision+language+manipulation LM < ... PaLM-E (later) GPT-4 is here

Where are we?

- vision today.
- How to associate words with sensory-motor experiences

Language Grounding

There are many things that we can ground language in! Focus on

How to associate words with meaning representation

Multimodality, Language Grounding

some slides from Eunsol Choi

Language Grounding

- What does "yellowish green" mean?
- Formal semantics: yellowish green is a predicate. Things are either yellowish green or not. No connection to real color
- Grounding in perceptual space:

 $--- \phi_{YellowishGreen}^{Hue}$ **YellowishGreen data**

McMahan and Stone (2015)

dog

Visual: green = [0,1,0] in RGB

• Auditory: loud = >120 dB

- Taste: sweet = some threshold level of sensation on taste buds
- High-level concepts:

Perception

eating

running

Learning from Interaction

Walk across the bridge

Alleviate dependence on large scale annotation

2. Use language to improve performance in control applications

Score: 7

1. Use feedback from control application to understand language

Reward +1

Score: 107

Other Grounding

Temporal concepts

- Intermediate and the second Ground in a time interval
- *fast, slow* = describing rates of change
- Functional:
 - Jacket: keeps people warm
 - Mug: holds water

Spatial Relations

• *left, on top of, in front of*: how should we ground these?

Size:

Whales are *larger* than lions

Focus today: grounding in images

Language and Vision Models

Grounding in Images

How would you describe this image?

What does the word "spoon" evoke?

the girl is licking the spoon of batter

Grounding Spoon

Winco 0005-03 7 3/8" Dinner Spoon...

\$7.16

🚾 wikiHow How to Hold a Spoon: 13 Steps (...

GO Indiegogo Spoon that Elevates Taste ...

- - Nouns: objects
 - Verbs: actions
 - Sentences: whole scenes or things happening
- Tasks:
 - them)
 - Image captioning: produce a whole sentence for an image

Grounding Language in Images

Syntactic categories have some regular correspondences to the world:

Object recognition (pick out one most salient object or detect all of

Language-vision Models

the girl is licking the spoon of batter

Visual Question Answering

"How many horses are

Agrawal et al., 2015

Language-vision Pre-training

- Text encoder: Transformer
- Image encoder: vision Transformer
- (Transformer over flattened patches)

T ₁	T ₂	T ₃		T _N
$I_1 \cdot T_1$	$I_1 \cdot T_2$	$I_1 \cdot T_3$		$I_1 \cdot T_N$
$I_2 \cdot T_1$	$I_2 \cdot T_2$	$I_2 \cdot T_3$		$I_2 \cdot T_N$
I ₃ ·T ₁	$I_3 \cdot T_2$	$I_3 \cdot T_3$		I ₃ ·T _N
÷	÷	:	•	÷
$I_N \cdot T_1$	$I_N \cdot T_2$	$I_N \cdot T_3$		$I_N \cdot T_N$

	T ₁	T ₂	T ₃	•••	
I ₁	$I_1 \cdot T_1$	$I_1 \cdot T_2$	$I_1 \cdot T_3$]
I ₂	$I_2 \cdot T_1$	$I_2 \cdot T_2$	$I_2 \cdot T_3$		
I ₃	$I_3 \cdot T_1$	$I_3 \cdot T_2$	$I_3 \cdot T_3$]
:	:	:	:	•••	
I _N	$I_N \cdot T_1$	I _N ·T ₂	I _N ·T ₃]

Language-vision Pre-training

 T_N $I_1 \cdot T_N$ $I_2 \cdot T_N$ $I_3 \cdot T_N$: $I_N \cdot T_N$

Contrastive objective: each image should be more similar to its correspond caption than to other captions

> maximize softmax $(I_1^T T_i)[1]$ + softmax($I_2^T T_i$)[2] + ...

> > Radford et al., 2021

(2) Create dataset classifier from label text

(3) Use for zero-shot prediction

Language-vision Pre-training

Radford et al., 2021

CLIP: Zero-shot Results

Stanford Cars

correct label: 2012 Honda Accord Coupe correct rank: 1/196 correct probability: 63.30%

CLIP: Zero-shot Results

correct label: Belize

Country211

correct rank: 5/211 correct probability: 3.92%

Autoregressive text-to-image model (differs from the diffusion models you may have seen, like Stable Diffusion or DALL-E)

Parti

A. A photo of a frog reading the newspaper named "Toaday" written on it. There is a frog printed on the newspaper too.

Yu et al., 2022

Parti

Manipulation: SayCan, PaLM-E

Most models like CLIP are just vision+language. What about interaction with the world?

SayCan

I spilled my drink, can you help?

Value Functions

"find a cleaner" "find a sponge" "go to the trash can" "pick up the sponge" "try using the vacuum"

SayCan

"find a cleaner" "find a sponge"

"go to the trash can" "pick up the sponge" "try using the vacuum"

I would:

- 1. find a sponge
- 2. pick up the sponge
- 3. come to you
- 4. put down the sponge
- 5. done

- Probability of taking an action decomposes as follows: $p(c_i|i,s,\ell_{\pi}) \propto p$

- Do you think this is a grounded language model?

SayCan

$$(c_{\pi}|s,\ell_{\pi})p(\ell_{\pi}|i)$$

p(language description) p(skill possible given world state) of skill | instruction)

Individual skills are learned in advance, form affordance models for that skill

Train a single multi-task policy that conditions on the lang description

Human: I spilled my coke, can you bring me something to clean it up?

Robot: I would 1. Find a sponge 2. Pick up the sponge 3. Bring it to you 4. Done

Language × Affordance Combined Score

SayCan

Most models like CLIP are just vision+language

PaLM-E: An Embodied Multimodal Language Model

PaLM-E

PaLM-E

- Explosion of multimodal pre-training for {video, audio, images, interaction} x text
- Many of these methods are Transformer-based
- Still haven't seen large-scale multimodal pre-training of this form advance text-only tasks, but there's potential!
- Impact of images on GPT-4 is unclear

Where are we today

GPT-4

Exam results (ordered by GPT-3.5 performance)

Estimated percentile lower bound (among test takers)

100% —

- Dark green: additional performance from vision pre-training
- This graph is hard to read and doesn't make sense...

LLaVA: Visual Instruction Tuning

Source: https://www.barnorama.com/wp-content/uploads/2016/12/03-Confusing-Pictures.jpg What is unusual about this image?

The unusual aspect of this image is a man ironing clothes on the back of a minivan or van. This is not a typical place to perform this activity, as one would usually iron clothes in a more stationary and safe location, such as a home, using a regular ironing board. The scene depicted in the image is peculiar as it involves a makeshift ironing setup on a vehicle, which can be both unsafe and unconventional. Additionally, it is not clear how the man is able to maintain balance and stability while ironing clothes in such an unstable environment.

Haotian Liu et al., 2023

Is the lack of grounding in text-only pre-trained models a problem?

- Multimodal methods can allow us to learn representations for images as well as text and provide a path towards language grounding
- Pre-training on text and other modalities is more and more common and unlocking new capabilities for models