Lecture 25: Efficiency and LLMs

Check-ins due tomorrow, will be graded as promptly as we can

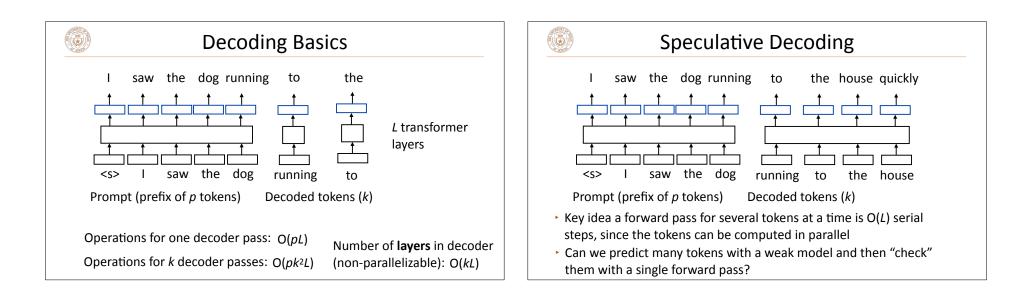
This Lecture

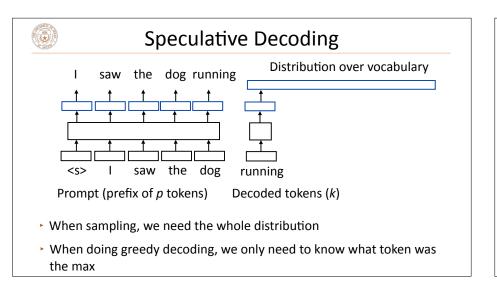
- Decoding optimizations: exact decoding, but faster
 - Speculative decoding
 - Medusa heads

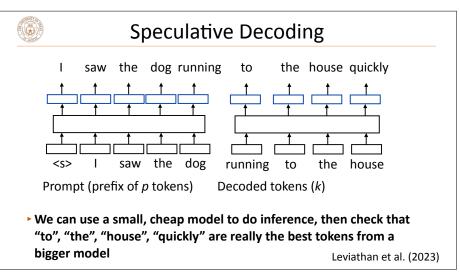
۲

- Flash attention
- Model compression
 - Pruning LLMs
 - Distilling LLMs
- Parameter-efficient tuning
- LLM quantization

Decoding Optimizations

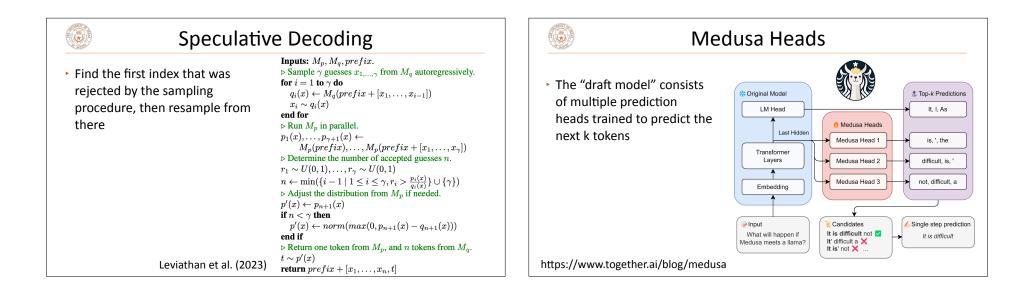


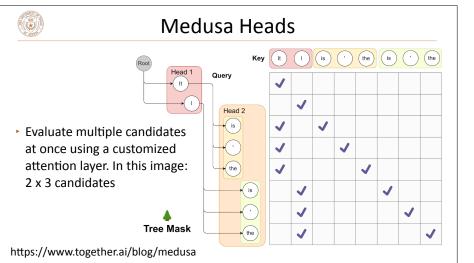


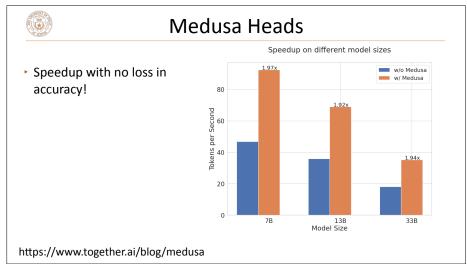


	Ι	saw	the	dog	g running	g to	the	house	e quickly
		1	1			t			
			DRAF	Г		DRAFT	DRAF	DRAF	T DRAFT
	<s></s>	I	saw	/ the	e dog	running	g to	the	house
Pro	oduce	e deco	ded t	token	s one at a	a time fro	om a f	ast dra	ft model
► Pro					s one at a running				ft model quickly
► Pro		saw †					the 1		

Speculative Dec	coding
[START] japan ¦ s benchmark bend n	Leviathan et al. (2023)
[START] japan ' s benchmark nikkei 22 75	
[START] japan ¦ s benchmark nikkei 225 index rose 22 <mark>t6</mark>	
[START] japan ' s benchmark nikkei 225 index rose 226 ; 69	points
[START] japan ' s benchmark nikkei 225 index rose 226 . 69	points , or 0 1
[START] japan ' s benchmark nikkei 225 index rose 226 . 64	P points , or 1 . 5 percent , to 10 , 9859
 Can also adjust this to use sampling. Treat t q(x) and may need to reject + resample (reject) 	





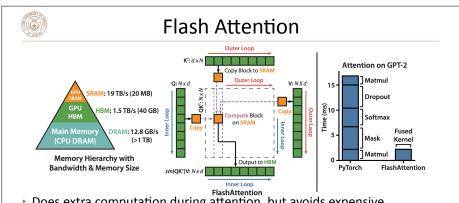


Other Decoding Improvements

- Most other approaches to speeding up require changing the model (making a faster Transformer) or making it smaller (distillation, pruning; discussed next)
- Batching parallelism: improve throughput by decoding many examples in parallel. (Does not help with latency, and it's a little bit harder to do in production if requests are coming in asynchronously)
- Low-level hardware optimizations?

۲

 Easy things like caching (KV cache: keys + values for context tokens are cached across multiple tokens)



- Does extra computation during attention, but avoids expensive reads/writes to GBU "high-bandwidth memory." Recomputation is all in SRAM and is very fast
- Essentially: store a running sum for the softmax, compute values as needed

~									
Models	ListOps	Text	Retrieval	Image	Pathfinder	Avg	Speedup		
Transformer	36.0	63.6	81.6	42.3	72.7	59.3	-		
FLASHATTENTION	37.6	63.9	81.4	43.5	72.7	59.8	2.4×		
Block-sparse FLASHATTENTION	37.0	63.0	81.3	43.6	73.3	59.6	2.8 ×		
Linformer [84]	35.6	55.9	77.7	37.8	67.6	54.9	$2.5 \times$		
Linear Attention [50]	38.8	63.2	80.7	42.6	72.5	59.6	2.3×		
Performer [12]	36.8	63.6	82.2	42.1	69.9	58.9	1.8×		
Local Attention [80]	36.1	60.2	76.7	40.6	66.6	56.0	1.7×		
Reformer [51]	36.5	63.8	78.5	39.6	69.4	57.6	1.3×		
Smyrf [19]	36.1	64.1	79.0	39.6	70.5	57.9	1.7×		

 Outperforms the speedup from many other approximate Transformer methods, which perform substantially worse

Model Compression

Approaches to Compression

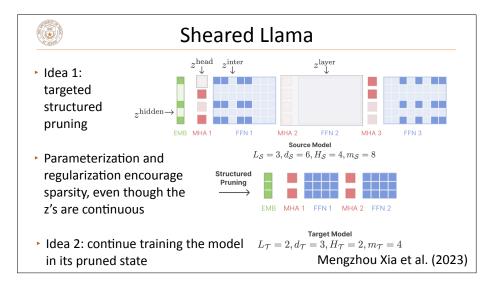
- Pruning: can we reduce the number of neurons in the model?
 - Basic idea: remove low-magnitude weights

Issue: sparse matrices are not fast, matrix multiplication is very fast on GPUs so you don't save any time!

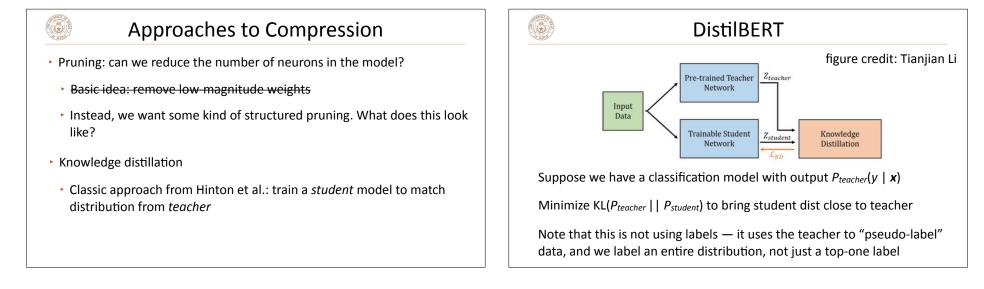
۲

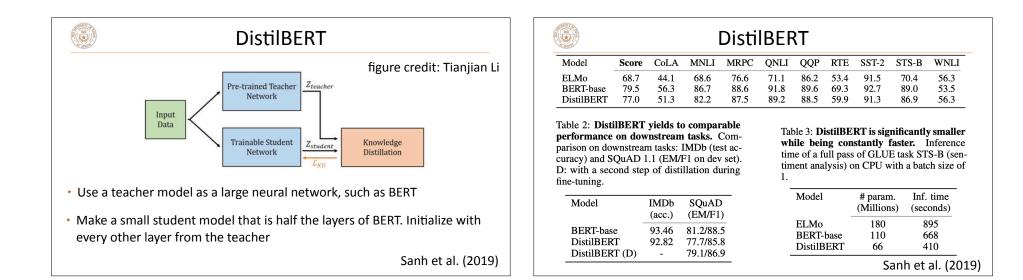
Approaches to Compression

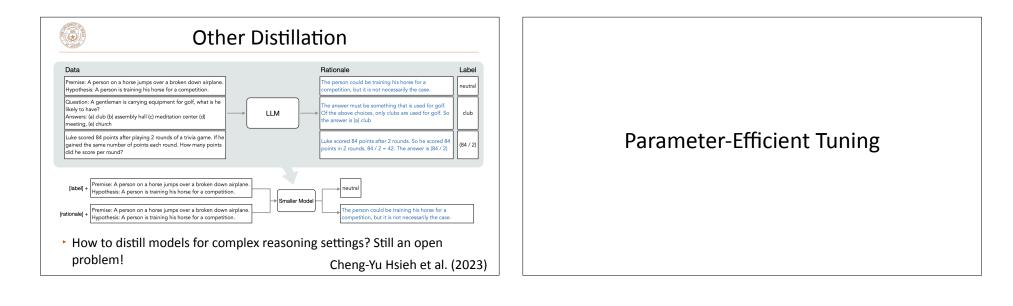
- Pruning: can we reduce the number of neurons in the model?
 - Basic idea: remove low-magnitude weights
- Instead, we want some kind of structured pruning. What does this look like?
- Still a challenge: if different layers have different sizes, your GPU utilization may go down



	Continued		LM	World Knowledge			
Model (#tokens for training)	LogiQA	BoolQ (32)	LAMBADA	NQ (32)	MMLU (5)	Average	
LLaMA2-7B (2T) [†]	30.7	82.1	28.8	73.9	46.6	64.6	
OPT-1.3B (300B) [†]	26.9	57.5	58.0	6.9	24.7	48.2	
Pythia-1.4B (300B) [†]	27.3	57.4	61.6	6.2	25.7	48.9	
Sheared-LLaMA-1.3B (50B)	26.9	64.0	61.0	9.6	25.7	51.0	
OPT-2.7B (300B) [†]	26.0	63.4	63.6	10.1	25.9	51.4	
Pythia-2.8B (300B) [†]	28.0	66.0	64.7	9.0	26.9	52.5	
INCITE-Base-3B (800B)	27.7	65.9	65.3	14.9	27.0	54.7	
Open-LLaMA-3B-v1 (1T)	28.4	70.0	65.4	18.6	27.0	55.1	
Open-LLaMA-3B-v2 (1T) [†]	28.1	69.6	66.5	17.1	26.9	55.7	
Sheared-LLaMA-2.7B (50B)	28.9	73.7	68.4	16.5	26.4	56.7	

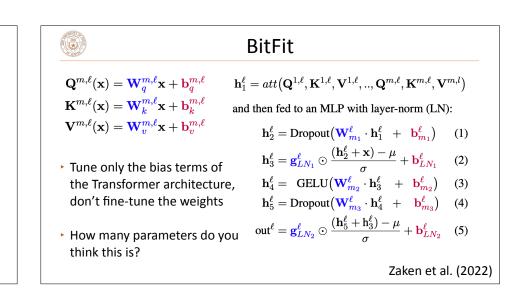






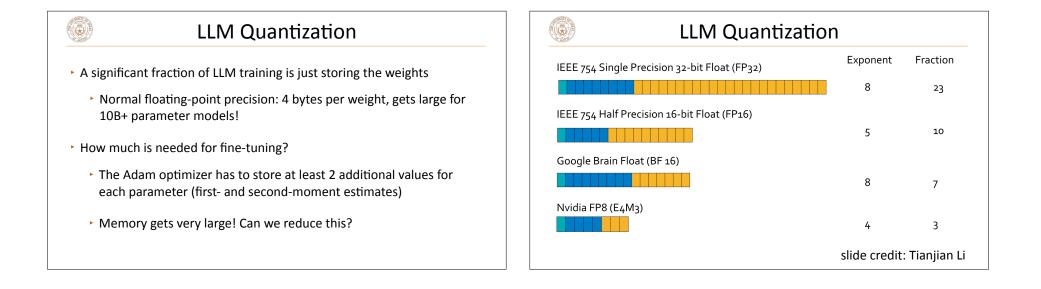
Parameter-Efficient Tuning

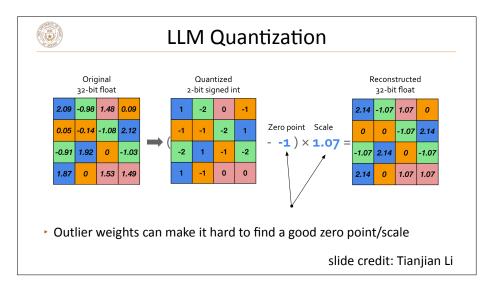
- Rather than train all model parameters at once, can we get away with just training a small number of them?
- What are the advantages of this?
- Typical advantages: lower memory, easier to serve many models for use cases like personalization or multitasking
- Not an advantage: faster (it's not)

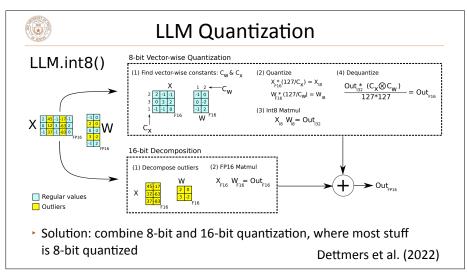


		%Param	QNLI	SST-2	MNLI _m	MNLI _{mm}	-	Avg.
	Train size		105k	67k	393k	393k	_	
(V)	Full-FT†	100%	93.5	94.1	86.5	87.1		84.8
(V)	Full-FT	100%	91.7 ± 0.1	$93.4{\pm}0.2$	85.5 ± 0.4	85.7±0.4		84.1
(V)	Diff-Prune [†]	0.5%	93.4	94.2	86.4	86.9		84.6
(V)	BitFit	0.08%	$91.4{\pm}2.4$	$93.2{\pm}0.4$	$84.4{\pm}0.2$	$84.8 {\pm} 0.1$		84.2
(T)	Full-FT‡	100%	91.1	94.9	86.7	85.9	-	81.8
(T)	Full-FT†	100%	93.4	94.1	86.7	86.0		81.5
(T)	Adapters‡	3.6%	90.7	94.0	84.9	85.1	-	81.1
(T)	Diff-Prune [†]	0.5%	93.3	94.1	86.4	86.0		81.5
(T)	BitFit	0.08%	92.0	94.2	84.5	84.8		80.9

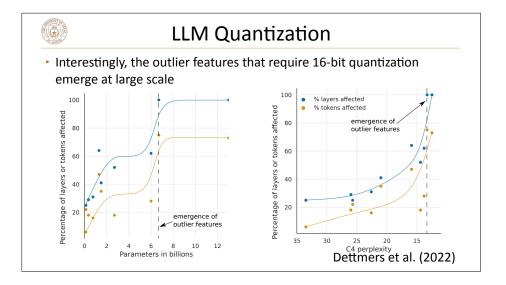
LoRA	
 Alternative: learn weight matrices as (W where BA is a product of two low-rank m 	
If we have a d x d matrix and we use a reduction of size r, what is the parame reduction from LoRA?	
 Allows adding low-rank matrix on top of existing high-rank model 	x x
 Unlike some other methods, LoRA can be "compiled down" into the model (just ad BA into W) 	
	Hu et al. (2021)

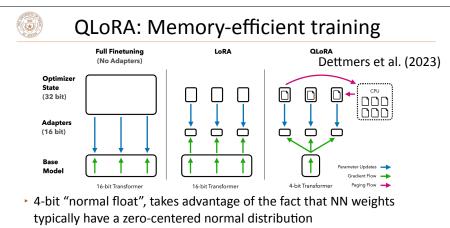






Parameters	125M	1.3B	2.7B	6.7B	13B
32-bit Float	25.65	15.91	14.43	13.30	12.45
Int8 absmax	87.76	16.55	15.11	14.59	19.08
Int8 zeropoint	56.66	16.24	14.76	13.49	13.94
Int8 absmax row-wise	30.93	17.08	15.24	14.13	16.49
Int8 absmax vector-wise	35.84	16.82	14.98	14.13	16.48
Int8 zeropoint vector-wise	25.72	15.94	14.36	13.38	13.47
Int8 absmax row-wise + decomposition	30.76	16.19	14.65	13.25	12.46
Absmax LLM.int8() (vector-wise + decomp)	25.83	15.93	14.44	13.24	12.45
Zeropoint LLM.int8() (vector-wise + decomp)	25.69	15.92	14.43	13.24	12.45





 Paged optimizer state to avoid memory spikes (due to training examples with long sequence length)

Where is this going?

۲

- Better GPU programming: as GPU performance starts to saturate, we'll probably see more algorithms tailored very specifically to the affordances of the hardware
- Small models, either distilled or trained from scratch: as LLMs gets better, we can do with ~7B scale what used to be only doable with ChatGPT (GPT-3.5)
- Continued focus on faster inference: faster inference can be highly impactful across all LLM applications

Takeaways

- Decoding optimizations: speculative decoding gives a fast way to exactly sample from a smaller model. Also techniques like Flash Attention
- Model optimizations to make models smaller: pruning, distillation
- Model compression and quantization: standard compression techniques, but adapted to work really well for GPUs