Intro to ChatGPT and Natural Language Processing
OpenAI announces GPT-4, claims it can beat 90% of humans on the SAT.
Five years ago, you could do this:

I'd like the Caesar salad, please.

Me gustaría la ensalada César, por favor.
Five years ago, you could do this:

Set an alarm for 8am tomorrow morning

Okay, your alarm is set.

What are my alarms?

You have an alarm for 8am.
Now, you can do this:

I'm supposed to come up with a topic for my European history essay. I have to write about one of the Tudor monarchs. Who would be three interesting monarchs to write about?
Now, you can do this:

I'm supposed to come up with a topic for my European history essay. I have to write about one of the Tudor monarchs. Who would be three interesting monarchs to write about?

Sure, the Tudor dynasty, which ruled England from 1485 to 1603, was filled with interesting figures, each with their own unique impact on the course of history. Here are three that might make for a compelling essay:

1. **Henry VII** (Reign: 1485–1509): The founder of the Tudor dynasty. He seized the throne after defeating Richard III at the Battle of Bosworth Field, effectively ending the Wars of the Roses. His reign marked the transition from medieval to early modern England, and his economic, diplomatic, and administrative policies helped stabilize the kingdom after years of civil war. His marriage to Elizabeth of York also symbolically united the houses of York and Lancaster.

2. **Henry VIII** (Reign: 1509–1547): Perhaps the most famous Tudor monarch, Henry VIII is best known for his six wives, the break with the Catholic Church, and the Act of Supremacy. His reign saw significant changes in England, including the establishment of the Church of England and the English Reformation.

3. **Elizabeth I** (Reign: 1558–1603): The only daughter of Henry VIII, Elizabeth I is known as the 'Virgin Queen'. During her reign, England saw significant advances in exploration, trade, and the arts. Her foreign policy was characterized by the British Armada, a naval battle against Spain.
Now, you can do this:

I'm working on a song about a breakup and I need a word that rhymes with "doubt" that thematically relates to sadness. Can you suggest a few words?
Now, you can do this:

I'm working on a song about a breakup and I need a word that rhymes with "doubt" that thematically relates to sadness. Can you suggest a few words?

Sure, here are a few words that rhyme with "doubt" and thematically relate to sadness:

1. "Shout" - This can refer to the anger or frustration that can come with a breakup.
2. "Rout" - This word means a decisive defeat. It could be used metaphorically to describe feeling overwhelmingly defeated after a breakup.
3. "Spout" - This could be used to refer to speaking or crying extensively about the breakup.
4. "Out" - This word could be used in the context of feeling left out or excluded after a breakup.
5. "Scout" - This word could be used to symbolize looking or searching for love or happiness after a breakup.
6. "Clout" - This could indicate the power or influence the other person had in the relationship, causing the sadness post-breakup.
How did we get from these single-purpose systems like Google Translate to ChatGPT?

What’s the core technology behind ChatGPT?

We’ll learn basic principles of machine learning (ML) and Natural Language Processing (NLP)
Try a few things in ChatGPT and share the results with others!

Try:
(a) asking it about a fact
(b) having it help you brainstorm about something
(c) solve a math problem
Machine Learning
If you’re learning to program, you might be doing things like this:

Write a function to uppercase every other letter in a string, starting with the second one.

```python
input = "stop staying up so late."
i = 0
result = ""
for letter in input:
    if i % 2 == 1:
        result += letter.upper()
    else:
        result += letter
    i += 1

# Output
"sToP StAyInG Up sO LaTe."
```
Programming (as you’re learning it)

Input → Program → Output

Programmer
But how do you write a program to do this?

I'd like the Caesar salad, please.

Me gustaría la ensalada César, por favor.
I’d like the César ensalada, por favor.
Machine learning can learn these rules from data, without us writing them:

I’d like the tacos. Me gustaría los tacos.

Caesar salad contains lettuce. La ensalada César contiene lechuga.

I’m eating salad. Estoy comiendo ensalada.

By seeing ground truth data for how to translate, we can learn the process.
I’d like the tacos. → Me gusta las tacos.

Me gustaría los tacos.

I’d like the tacos. → Me gustaría las tacos.

I’d like the tacos. → Me gustaría los tacos.

This is called *training*. We repeatedly get predictions from an AI system, then compare them to the right answer. We update it to get them right. We didn’t have to write any rules; the system figured it out!
Programming (as you’re learning it)

Input \rightarrow Program \rightarrow Output

Programmer

Machine learning

Input \rightarrow Machine learning \rightarrow Program

Output

(examples of what we want to do)
Language Modeling
ChatGPT is a language model. It produces a sequence of words given some input. It generates one word at a time.

Like translation, this is a task we need machine learning for.
Language modeling is the same as predictive text: Given a sequence of words so far (the context), predict what comes next, like in predictive text!

We never know for sure what comes next, but we can still make good guesses!

We can’t write rules to do this. We need machine learning!
1. Suppose we have the context “I want to ____”. Lots of words can come next and form sensible sentences. Think about a few words that can come next; what do these have in common?

- swim
- eat
- play
- shovel

grammatical but less likely
2. Can you think of a context (a start of a sentence like “I want to ___” ending in a blank) where the next word has to be one word in particular for it to be correct?

The capital of Nebraska is ______ Lincoln

The third President of the United States was ____ Thomas Jefferson one of the founding fathers a slave owner

one right answer but may be hard to predict!
These examples suggest that predicting text is very powerful:

Q: What started the American Revolution? A: _____

Once upon a time, there was a _____

The translation of “I’d like the Caesar salad, please” into Spanish is “_____”

ChatGPT is a “supercharged” language model! Even though it can only do one thing (predictive text), it has way more diverse capabilities than past systems like Google Translate.
Mathematics of Language Modeling
What does predicting the next word actually mean?

I want to ______

swim

eat

play

shovel

There’s never just one right answer. There are a bunch of options, some more likely and some less likely.
Tomorrow, the weather will be ____

sunny
cloudy
rainy

Three options. This is what we call our **vocabulary**.

Language models place a **probability distribution** over the **vocabulary**.
Probability distribution: set of outcomes, each associated with a probability.

Flipping a coin: two outcomes (heads and tails), each has probability 0.5 (50%)

Tomorrow, the weather will be ____

Words are our outcomes

Probabilities have to be ≥ 0

Probabilities have to sum to 1 over all the options
In reality, there are over 50,000 outcomes from a language model, but the idea is still the same!

Tomorrow, the weather will be ____

These language models can give small probabilities, but never give 0!
In reality, there are over 50,000 outcomes from a language model, but the idea is still the same!

I want to ____

- go
- eat
- see
- swim
- laugh
- sunny
- stormy
Once upon a time, there was a brave and noble knight who lived in a small kingdom. He was known for his courage and strength more than any battle. But one day, while on a journey to a far-off land, he encountered a young princess. The wizard explained that a powerful spell was needed to save the kingdom. In GPT-3 (an earlier system than ChatGPT), you could actually see the probabilities!

- brave = 10.12%
- young = 23.86%
- small = 8.36%
- little = 7.25%
- princess = 6.89%
Find some prompts in ChatGPT that always return the same answer

Try to find some others that give 2-3 different answers and try them a few times. Can you get a sense of the probability for each answer?

Hint: try asking for a random word, or a random word starting with some letter, or a random number.
Mathematics of Language Modeling (Advanced)
Where do the probabilities in language models come from?
A language model places a probability distribution over the next word given the words that have come before.

We are going to look at a 2-gram language model:

\[P(w) = P(w_1)P(w_2 | w_1)P(w_3 | w_2)P(w_4 | w_3) \ldots \]

\(w \) = a sentence made up of \(w_1, w_2, \ldots \)

This is a simplified model where we try to predict the next word **based only on the previous word**.
This is a conditional probability distribution:
\[P(\text{next word} = y \mid \text{previous word} = x) \]

“the probability of the next word is \(y \) given that the previous word is \(x \)”

\[P(\text{next word} = \text{Austin} \mid \text{previous word} = \text{to}) = 0.2 \]

“if we see \text{to} I think there’s a 20% chance the next word is \text{Austin}”

\[P(\text{next word} = \text{Europe} \mid \text{previous word} = \text{to}) = 0.1 \]
\[P(\text{next word} = \text{Mexico} \mid \text{previous word} = \text{to}) = 0.1 \]
\[P(\text{next word} = \text{eat} \mid \text{previous word} = \text{to}) = 0.05 \]

…
\[P(\text{next word} = \text{was} \mid \text{previous word} = \text{to}) = 0.00001 \]

These have to add up to 1 over the vocabulary (every possible word \(y \) could be)
If we have these probabilities, we can build our predictive text system

\[P(\text{next word } = _ \mid \text{ previous word } = \text{to}) \]

Check all the possible words from that list, pick the ones with the highest probability (most likely next words)

Where do these probabilities come from? We’re going to learn them from a bunch of text data we see
Lots and lots of text data

2-gram LM probabilities

estimation: this step is what we need to talk about!
Suppose we have a *biased* coin that’s heads with probability p. p is a number between 0 and 1, and for a normal coin, $p = 0.5$ (equal probability of heads or tails).

Suppose we flip the coin four times and see (H, H, H, T)

1. What do you think the probability p of heads is with this coin?

- We don’t know what p is — p could be 0.5! But $p = 3/4 = 0.75$ maximizes the probability of the data. We’ll say “this is the most likely value of p”
- The probability of the data is $p*p*p*(1-p)$ — if you’ve taken calculus, you can take the *derivative* and set it equal to zero and find $p = 0.75$
The decision for what words occur after a word \(w \) is exactly the same as the biased coin, but with 50,000+ possible outcomes (different words) instead of 2.

\[
P(w | w_{\text{prev}}) = \frac{\text{count}(w_{\text{prev}}, w)}{\text{count}(w_{\text{prev}})}
\]

These are the parameters of the model. They allow the model to figure out what to predict.
I like to **eat** cake but I want to **eat** pizza right now. Mary told her brother to **eat** pizza too.

- All other words 0 probability isn’t right! We want to assign some small probability to all of the words

- We want to *smooth* the distribution from our counts

\[
P(w \mid w_{\text{prev}}) = \lambda \frac{\text{count}(w_{\text{prev}}, w)}{\text{count}(w_{\text{prev}})} + (1 - \lambda) \frac{\text{count}(w)}{\text{total word count}}
\]

- a number between 0 and 1 (like 0.9) \hspace{5cm} \text{what we had before}
- \hspace{1cm} \text{a unigram LM}
Programming exercise:

- Read in a bunch of text data
- Store the counts of word pairs (and individual words, for smoothing)
- Compute bigram probabilities
- Predict the next word or sample the rest of the sentence
See linked worksheet
ChatGPT: The Basics
Language models give us a probability distribution over the next word

Given a prompt, we can pick a random word to continue it. ChatGPT just does this repeatedly to give you your output. (We can also pick the most likely word)

I want to _____

- swim
- eat
- play
- shovel

I want to eat _____

- Korean
- lots
- tacos
How does ChatGPT decide the probabilities of the words? It uses a neural network.

These are called the parameters of the model. They allow the model to figure out what to predict.
Model is fed sentences from the Internet and changes its parameters to predict them correctly.

Lots of sentences from the Internet

Model no longer changes.
You give it data and it makes guesses.
Training: the model is given a sentence.

I want to play.

Uses calculus (a procedure called backpropagation) to figure out how to change the parameters to make play more likely.

The model gave play low probability, but that was the right answer!
ChatGPT is a type of neural network called a Transformer.

Improved estimates of how the probabilities should change

want now “knows” what words are around it

+6% for *eat*
+3% for *swim*
-2% for *study*

“Transform” the sequence of vectors with math

Turn each word into a vector (list of numbers)

ChatGPT has 96 “Transformer” layers. This is what makes it work so well.

ChatGPT has a lot of parameters. This allows it to memorize lots of the Internet.
ChatGPT Part 2
ChatGPT is more than just a language model.

What was the "shot heard round the world"?

The phrase "the shot heard round the world" refers to the opening shot of the American Revolutionary War. It took place on April 19, 1775, in the town of Lexington, Massachusetts. British troops were marching from Boston to Concord to seize a cache of weapons and ammunition that the American colonists had gathered there.

As the British soldiers approached Lexington, they encountered a group of colonial militiamen who were determined to protect their supplies and defend their rights. The two sides faced each other on Lexington Green, and although the specific events leading up to the shot are somewhat disputed, a single gunshot rang out, marking the beginning of the conflict. It remains unclear which side fired the first shot, but the incident quickly escalated into a brief skirmish known as the Battle of Lexington.

Ralph Waldo Emerson, a famous American poet, later immortalized this event in his poem "Concord Hymn," where he referred to the shot as "the shot heard round the world." This phrase has since become a well-known symbol of the American Revolution and its impact on history.
Here's an example of a fake news story about Kamala Harris:

As an AI language model, I must adhere to strict ethical guidelines, and one of them is to not create or spread fake news or false information about any individual, including Kamala Harris or any other public figure.

Fake news can be harmful and misleading, and it is essential to ensure the accuracy and credibility of the information we share. If you have any questions about Kamala Harris's policies, career, or public statements, I'd be happy to provide accurate and factual information up to my last update in September 2021. However, I cannot create or endorse any fake news stories. If you come across suspicious information, it's crucial to verify it from credible and reliable sources before sharing it further.

How did it learn to give this response? On the Internet prior to 2022, there was no text saying “As an AI language model”
The third president of the United States was Thomas Jefferson.

The third president of the United States was a founding father.

Human feedback:

generate two options, a person judges which one is better, then parameters are updated
Key ingredient: learning from human feedback.

Once upon a time, there was ___

- a guy who went to CVS and bought Gatorade.
- a knight who set out to fulfill a prophecy of...

Human feedback:
- generate two options,
- a person judges which one is better, then parameters are updated.

The second one is better!
End result:

Once upon a time, there was ...

Who was the third president of the US?

Generate a fake news story...

Interesting stories

Informative answers

Non-answers to harmful prompts

We had basic GPT-3 in 2020, but it took until 2022 for this process to really be worked out, which led to ChatGPT.
How does ChatGPT know things?
How does ChatGPT “know” things?
It doesn’t search the web like Google.

Through the training process, ChatGPT has done a really good job of memorizing associations between words.
Are language models always right?

The third President of the United States was ____

Of the names here, Thomas is the most likely, but John is close.
If the model has seen something a lot in its data, it’ll probably do a better job matching it.

43rd president:
seen a lot

48th president (we’ve only had 46 presidents):
not seen, so it “hallucinates”
What do these models know? It depends on what they’re trained on:

- Wikipedia
- Books
- “Help” sites: StackOverflow/Quora
- Public social media (including informative content from sites like reddit)
- Other random stuff: patents, SparkNotes, ...
ChatGPT “knows” things with a range of outcomes:

- Sometimes very confident
- Sometimes very not confident (ChatGPT is good at saying “I don’t know)
- Sometimes confident and wrong!

Measuring ChatGPT’s performance is very hard.

- We can give it tests. If you try it out, it’ll tell you who the 3rd president was, so it “knows” this fact...but also saw it in the training data.
- It got 1410 on the SAT, but it also saw every SAT question on the Internet. Maybe even _those specific_ SAT questions!
Try asking GPT about some questions from topics you’ve learned in history, science, or other classes. Do you see any mistakes in what it says?

Try to ask GPT about a very specific topic you know a lot about (music, movies, TV, games, etc.).

Hint: pick something obscure and consider asking “why” questions. For example, “why did [character] do [action]? Or ask about a minor detail. See if you can find a mistake in what it says!
Risks of Large Language Models
Are language models always right?

No!

How many films has Arnold Schwarzenegger played "The Terminator" in? Give me a number and then list the movies.

Arnold Schwarzenegger has played "The Terminator" in three films. Here is the list of those movies:

Missed by ChatGPT:

Terminator: Dark Fate (2019)
Are language models always fair?

Because these models are trained on the web, they’ll always encode historical biases.

Timnit Gebru et al. “Stochastic Parrots”
A ChatGPT query takes 100x more energy to execute than a Google search

Llama 2 (a ChatGPT-like model from Meta) training produced 539 metric tons of CO₂

Equivalent to ~3 planes flying from New York to San Francisco

Patterson et al. *Carbon Emissions and Large Neural Network Training*

Not yet comparable to agriculture or energy production in terms of impact on the climate, but could increase further

Timnit Gebru et al. “Stochastic Parrots”
Impact on society

Losing jobs?

Robot companions?
What do you think are the biggest potential harms of ChatGPT that you can imagine or you’ve heard about?
Future Risks of Large Language Models?
Are these new “AIs” like ChatGPT going to kill us? Some people think so!
Fears of extinction aren’t very concrete today, but are based on projected capabilities of future models.

OpenAI, GPT-4 paper
Pause Giant AI Experiments: An Open Letter

We call on all AI labs to immediately pause for at least 6 months the training of AI systems more powerful than GPT-4.

Mitigating the risk of extinction from AI should be a global priority alongside other societal-scale risks such as pandemics and nuclear war.

Signatories:

- Geoffrey Hinton
 Emeritus Professor of Computer Science, University of Toronto
- Yoshua Bengio
 Professor of Computer Science, U. Montreal / Mila
- Demis Hassabis
 CEO, Google DeepMind
- Sam Altman
 CEO, OpenAI
Lots of research on “AI Alignment”: how can we get AI to behave in the interest of humanity?

- Early example: Asimov’s Three Laws of Robotics

- Much of how ChatGPT is tweaked can be viewed as alignment

- We will likely see a lot more work on alignment. Less likely to see regulation banning research on systems like ChatGPT.
Where do you think AI systems might be in 10 years? What about in 50 years?
Where to go next
ChatGPT can be a great resource if used correctly

› Use it for brainstorming and things you can check

› Verify what it tells you with other sources
Courses to take:

- More programming or software engineering can help but isn’t critical
- Machine learning or data science
- Math to learn: probability, calculus (but not essential!)

Online courses

- Sentiment Analysis tutorial: https://realpython.com/sentiment-analysis-python/
- Andrew Ng’s Coursera course: https://www.coursera.org/learn/machine-learning
‣ Understanding more about neural networks: Chris Olah, Jay Alammar

https://colah.github.io/

https://jalammar.github.io/

‣ Latest big language models:

https://huggingface.co/

https://python.langchain.com/docs/get_started/introduction.html