NLP and Language Models

What is this?

Prerecorded videos + exercises you can integrate into your class

https://www.cs.utexas.edu/~gdurrett/courses/nlp-module/

What is NLP?

Natural Language Processing

human languages (not computer languages)

doing things with them automatically!

Everyday NLP Tools

- Google Translate
- Siri/Alexa/etc.
- ▶ Even some Google searches are powered by NLP:

What can we do with NLP?

- Data science: all kinds of language data to analyze!
 - Product reviews
 - Customer service chat logs
 - ▶ Social media: emerging information about events, spread of information, ...
- ▶ It's easier than ever to do it: you no longer need an MS/PhD to build some basic NLP models
 - Sentiment Analysis tutorial: https://realpython.com/sentiment-analysis-python/
- Important for students: be aware of how to look at data, know about NLP systems and what they can do

Why NLP?

- Many colleges offering NLP now, huge hiring boom in professors
- Many more MS/PhD students studying it (and still getting jobs, for now)
- Growth in published papers:

What I'm Offering

- ▶ 10 videos / 80 minutes of prerecorded video
- Two activities:
 - ▶ Building an *n-gram language model*: a probabilistic model for "predictive text" (what's the next word after I've typed a few?). Only relies on data structures and basic probability calculations [30-90 minute coding exercise]
 - ▶ Conditional probability distribution: $P(\text{next word} = y \mid \text{previous word} = x)$

P(next word = Austin | previous word = to) = 0.2

"if we see *to* I think there's a 20% chance the next word is *Austin*"

- ▶ Play around with Write With Transformer [15 minute web demo exercise]
 - ▶ Large neural network model that's really good at this task w/a slick demo

https://www.cs.utexas.edu/~gdurrett/courses/nlp-module/

Goals of this module

- Learn what NLP is about
- Learn some basic ideas of machine learning: fitting a statistical model to examples of a problem we want to solve to learn how to solve that problem
- See how a statistical model for predictive text works (what word should come next in this sentence?)
- ▶ Learn the connections between this language model and state-of-the-art systems such as Google's BERT and OpenAI's GPT-3 models

Demo/Walkthrough

Version 1 (60-70 minutes)

- ▶ Intro and a high-level sketch of how some source code works [~35 minutes]
- Skip the coding exercise
- ▶ Play around with Write With Transformer [15 minute web demo exercise]
- Discussion/conclusion [15 minutes]
- ▶ We ran this at the UT Summer Academies for an audience of ~30

Version 2 (120 minutes)

- ▶ Intro [~20 minutes]
- Prep for coding [20 minutes]
- Coding [30-90 minutes, can be asynchronous]
- ▶ Play around with Write With Transformer [15 minute web demo exercise]
- Discussion/conclusion [15 minutes]

Thanks

Marla Gilliland, Colin Pittman, and other folks at UT LAITS

Verena Kalhoff and Adam Klivans (IFML)

Joy Schwartz (TACC)

Jose Luis Silva-Smith (Tornillo High School)

Email me if you want to use this!