Assignment 3: Sequential CRF for NER

Academic Honesty Please see the course syllabus for information about collaboration in this course. While you may discuss the assignment with other students, all work you submit must be your own!

Goal In this project you’ll implement a CRF sequence tagger for NER. You’ll implement the Viterbi algorithm on a fixed model first (an HMM), then generalize that to forward-backward and implement learning and decoding for a feature-based CRF as well. The primary goal of this assignment is to expose you to inference and learning for a simple structured model where exact inference is possible. Secondarily, you will learn some of the engineering factors that need to be considered when implementing a model like this.

The expectation in this project is that you understand CRFs and HMMs from scratch using the code we give you. You should not call existing CRF libraries in your solution to this project.

Peer Grading The last part of this project uses peer grading once the assignment is submitted. There is a short written component submitted on Canvas.

Background

Named entity recognition is the task of identifying references to named entities of certain types in text. We use data presented in the CoNLL 2003 Shared Task (Tjong Kim Sang and De Meulder, 2003). An example of the data is given below:

Singapore NNP I-NP B-ORG
Refining NNP I-NP I-ORG
Company NNP I-NP I-ORG
expected VBD I-VP O
to TO I-VP O
shut VB I-VP O
CDU NNP I-NP B-ORG
3 CD I-NP I-ORG
. . O NONE O

There are four columns here: the word, the POS tag, the chunk bit (a form of shallow parsing—you can ignore this), and the column containing the NER tag. NER labels are given in a BIO tag scheme: beginning, inside, outside. In the example above, two named entities are present: Singapore Refining Company and CDU 3. O tags denote text not part of a named entity. B tags indicate the start of a named entity, and I tags indicate the continuation of the previous named entity. Both B and I tags are hyphenated and contain a type after the hyphen, which in this dataset is one of PER, ORG, LOC, or MISC. A B tag can immediately follow another B tag in the case where a one-word entity is followed immediately by another entity. However, note that an I tag can only follow an I tag or B tag of the same type.

An NER system’s job is to predict the NER chunks of an unseen sentence, i.e., predict the last column given the others. Output is typically evaluated according to chunk-level F-measure.\(^1\) To evaluate a single sentence, let \(C \) denote the predicted set of labeled chunks represented by a tuple of (label, start index, end

\(^1\)Tag-level accuracy isn’t used because of the prevalence of the \(\circ \) class—always predicting \(\circ \) would give extremely high accuracies!
index) and let C^* denote the gold set of chunks. We compute precision, recall, and F_1 as follows:

$$\text{Precision} = \frac{|C \cap C^*|}{|C|}; \quad \text{Recall} = \frac{|C \cap C^*|}{|C^*|}; \quad F_1 = \frac{1}{\frac{1}{2} \left(\frac{1}{\text{Precision}} + \frac{1}{\text{Recall}} \right)}$$

The gold labeled chunks from the example above are (ORG, 0, 3) and (ORG, 6, 8) using 0-based indexing and semi-inclusive notation for intervals.

To generalize to corpus-level evaluation, the numerators and denominators of precision and recall are aggregated across the corpus. State-of-the-art systems can get above 90 F_1 on this dataset; we’ll be aiming to get close to this and build systems that can get in at least the mid-80s.

Your Task

You will be building a CRF NER system. This is broken down for you into a few steps:

1. Implementing Viterbi decoding for a generative HMM.
2. Generalizing your Viterbi decoding to forward-backward to compute marginals, then using those to train a simple feature-based CRF for this task.
3. Extending the CRF for NER to use beam search.

Getting Started

Download the data and code from Canvas. You will need Python 3 and numpy. Try running

```python
python ner.py
```

This will run a very bad NER system, one which simply outputs the most common tag for every token, or O if it hasn’t been seen before. The system will print a bunch of warnings on the dev set—this baseline doesn’t even produce consistent tag sequences.

Data
eng.train is the training set, eng.testa is the standard NER development set, and eng.testb.blind is a blind test set you will submit results on. The deu* files are German data that you can optionally experiment with, but you’re not required to do anything with these.

Code
We provide:

- ner.py: Contains the implementation of BadNerModel and the main function which reads the data, trains the appropriate model, and evaluates it on the test set. Note that this code can also read/write your trained model (described more below under Part 3).

- nerdata.py: Utilities for reading NER data, evaluation code, and functions for converting from BIO to chunk representation and back. The main abstraction to pay attention to here is LabeledSentence, which contains a sequence of Token objects (wrappers around words, POS tags, and chunk information) and a set of Chunk objects representing a labeling. Gold examples are LabeledSentence and this is also what your system will return as predictions.

- utils.py: Indexer is as before, with Indexer additionally being useful for mapping between labels and indices in dynamic programming. A Beam data structure is also provided for Part 3.
optimizers.py: Three optimizer classes are provided implementing SGD, unregularized Adagrad, and L1-regularized Adagrad. These wrap the weight vector, exposing access and score methods to use it, and are updated by apply_gradient_update, which takes as input a Counter of feature values for this gradient as well as the size of the batch the gradient was computed on.

models.py: You should feel free to modify anything in this file as you need, but the scaffolding will likely serve you well. We will describe the code here in more detail in the following sections.

Next, try running

```
python ner.py --model HMM
```

This will crash with an error message. You have to implement Viterbi decoding as the first step to make the HMM work.

Part 1: Viterbi Decoding (25 points)

Look in models.py. train_hmm_model estimates initial state, transition, and emission probabilities from the labeled data and returns a new HmmNerModel with these probabilities. Your task is to implement Viterbi decoding in this model so it can return LabeledSentence predictions in decode.

We’ve provided an abstraction for you in ProbabilisticSequenceScorer. This abstraction is meant to help you build inference code that can work for both generative and probabilistic scoring as well as feature-based scoring. score_init scores the initial HMM state, score_transition scores an HMM state transition, and score_emission scores the HMM emission. All of these are implemented as log probabilities. Note that this abstraction operates in terms of indexed tags, where the indices have been produced by tag_indexer. This allows you to score tags directly in the dynamic programming state space without converting back and forth to strings all the time.

You should implement the Viterbi algorithm with scores that come from log probabilities to find the highest log-probability path. See the provided Viterbi lecture notes for a detailed description of the algorithm.

Note that the code here does not estimate STOP probabilities! These aren’t too important in practice when using the tagger for posterior inference (as opposed to sampling from it), and it simplifies the code and keeps it more similar to Part 2. So you should simply disregard the transition to STOP in any pseudocode you reference.

If you’re not sure about the interface to the code, take a look at BadNerModel decoding and use that as a template.

The instructors’ reference implementation of Viterbi decoding for the HMM gets 76.89 F\textsubscript{1} on the development set, though yours may differ slightly.

Implementation tips

- Python data structures like lists and dictionaries can be pretty inefficient. Consider using numpy arrays in dynamic programs.

- Once you run your dynamic program, you still need to extract the best answer. Typically this is done by either storing a backpointer for each cell to know how that cell’s value was derived or by using a backward pass over the chart to reconstruct the sequence.
Part 2: CRF Training (50 points)

In the CRF training phase, you will implement learning and inference for a CRF sequence tagger with a fixed feature set. We provide a simple CRF feature set with emission features only. We do impose constraints in the model to only produce valid BIO sequences (prohibiting a transition to I-X from anything except I-X and B-X), which are implemented as described below.

We provide a code skeleton in `CrfNerModel` and `train_crf_model`. The latter calls feature extraction in `extract_emission_features` and builds a cache of features for each example. It then loops through each example and applies the gradient updates appropriately.

We also provide a `FeatureBasedSequenceScorer`. This is analogous to `ProbabilisticSequenceScorer`, but implements the CRF potentials on emissions and transitions. Crucially, this model does not rely on transition features, but instead uses hardcoded transitions.

You can use the following command to run this part of the code.

```python
python ner.py --model CRF
```

You should take the following steps to implement your CRF:

1. Implement `compute_gradient` by generalizing your Viterbi code to forward-backward and using forward-backward to compute the gradient for the provided emission features. You can extend your code to use `FeatureBasedSequenceScorer`, which can be substituted in for `ProbabilisticSequenceScorer`.

2. Implement `decode` in `CrfNerModel`, which should be able to follow your Viterbi code using the new scorer.

To get full credit on the assignment, you should get a score of at least 85 F1 on the development set. Assignments falling short of this will be judged based on completeness and awarded partial credit accordingly. The instructors’ reference implementation was able to get around 88 F1 in 3 epochs (taking about 12 minutes) using the given emission features and unregularized Adagrad as the optimizer.

Implementation Tips

- Make sure that your probabilities from forward-backward normalize correctly! You should be able to sum the forward x backward chart values at each sentence index and get the same value (the normalizing constant). You can check your forward-backward implementation in the HMM model if that’s useful.

- When implementing forward-backward, you’ll probably want to do so in log space rather than real space. (+, x) in real space translates to (log-sum-exp, +) in log space. Use `numpy.logaddexp`.

- The NER tag definition has hard constraints in it (only B-X or I-X can transition to I-X), which are built into the `FeatureBasedSequenceScorer`. **You do not need to learn transition features!**

- If your code is too slow, make sure your forward-backward pass doesn’t do unnecessary computation and that you’re exploiting appropriate sparsity in the gradients. Run your code with `python -m cProfile ner.py` to print a profile and help identify bottlenecks.

- Implement things in baby steps! First make sure that your marginal probabilities look correct on a single example. Then make sure that your optimizer can fit a very small training set (10 examples); you might want to write a small amount of extra code to compute log-likelihood and check that this goes up, along with train accuracy. Then work on scaling things up to more data and optimizing for development performance.
Part 3: Beam Search (25 points)

Finally, you should implement beam search for your CRF model. Beam search is an approximate inference scheme that only maintains a certain number of hypotheses at each timestep during inference, unlike Viterbi which keeps track of all of them. At each state, the highest-scoring hypotheses are kept in a data structure called a beam.

You should implement this modification in the decode_beam method in CrfNerModel. You can use whatever data structures you want to implement the beam, but the Beam class provided in utils.py provides a natural way to handle a beam of scored hypotheses, although it’s not as efficient as it could be.

Your inference (decoding the test set) using a beam size of 2 should not lose more than 5 F1 compared to your Viterbi implementation.

Note that using the --inference BOTH flag allows you to run both beam and Viterbi at the same time, to facilitate comparison of these. Furthermore, once you’ve implemented and run Q2 correctly, you don’t need to retrain the model every time. Every time the CRF is trained, the CRF model are written to crf_model.pkl. You can add the --crf_model_path crf_model.pkl argument to your script to skip training and load this saved model. Thus, you can test your inference without having to retrain the model, which is quite time-consuming.

Autograder 5 points of this part is autograded based on the score criterion.

Writeup The remaining 20 points of this part is decided on the basis of a short writeup. In your writeup, you should report three things:

1. Report accuracy and runtime for your CRF model using both Viterbi and at least 4 different values of the beam size, including beam size 1. (You can plot these values as a graph or in a table.)

2. Describe what trends you see in accuracy and runtime. How does beam search compare to your expectations here?

3. Under what circumstances do you think beam search would be more effective relative to Viterbi? That is, what characteristics of a problem (sequence length, number of states, model, features, etc.) would change what you’ve observed?

Peer Assessment When doing the peer assessment, your job is not to assign a grade. Instead, comment on the following factors:

1. Did the student complete the assignment as specified (include all the parts above)? (yes/no question)

2. Did the student’s analysis logically make sense given their results? (1-3 sentences)

3. How did the student’s analysis of their results compare to yours? Did you observe similar or different trends? If you observed differences, describe why you think these might’ve happened. (1-3 sentences)

Submission and Grading

You will upload your code and trained model to Gradescope. (Training is time-consuming, so the autograder will not be retraining your model; it’ll use the one you upload.) Additionally, you will submit your short writeup to Canvas under “Assignment 3 Part 3.”
Whenever you train your model, it’s written to `crf_model.pkl` in the current directory. If you specify `--crf_model_path filename` as an argument, the script reads the trained model from filename instead of training.

Your code will be graded on the following criteria:

1. Execution: your code should train and evaluate within the time limits without crashing
2. Accuracy of your models on the development set
3. Accuracy on the blind test set: this is not explicitly reported by the autograder but we may consider it

Make sure that the following commands work before you submit (for Parts 1 and 2+3, respectively):

```python
python ner.py --model HMM
python ner.py --model CRF --inference BOTH --crf_model_path crf_model.pkl
```

References