
Assignment 3: Transformer Language Modeling

Academic Honesty: Please see the course syllabus for information about collaboration in this course.
While you may discuss the assignment with other students, all work you submit must be your own!

Goals The primary goal with this assignment is to give you hands-on experience implementing a Trans-
former language model. Understanding how these neural models work and building one from scratch will
help you understand not just language modeling, but also systems for many other applications such as ma-
chine translation.

Dataset and Code

Please use up-to-date versions of Python and PyTorch for this assignment. See Assignment 2 for instal-
lation instructions for PyTorch.

Data The dataset for this paper is the text81 collection. This is a dataset taken from the first 100M
characters of Wikipedia. Only 27 character types are present (lowercase characters and spaces); special
characters are replaced by a single space and numbers are spelled out as individual digits (20 becomes two
zero). A larger version of this benchmark (90M training characters, 5M dev, 5M test) was used in Mikolov
et al. (2012). We will be splitting these into sequences of length 20 for Part 1.

Framework code The framework code you are given consists of several files. We will describe these in
the following sections. utils.py should be familiar to you by now. letter counting.py contains
the driver for Part 1, which imports transformer.py. lm.py contains the driver for Part 2 and imports
transformer lm.py.

Part 1: Building a “Transformer” Encoder (50 points)

In this first part, you will implement a simplified Transformer (missing components like layer normalization
and multi-head attention) from scratch for a simple task. Given a string of characters, your task is to
predict, for each position in the string, how many times the character at that position occurred before,
maxing out at 2. This is a 3-class classification task (with labels 0, 1, or > 2 which we’ll just denote as 2).
This task is easy with a rule-based system, but it is not so easy for a model to learn. However, Transformers
are ideally set up to be able to “look back” with self-attention to count occurrences in the context. Below is
an example string (which ends in a trailing space) and its corresponding labels:

i like movies a lot
00010010002102021102

We also present a modified version of this task that counts both occurrences of letters before and after in
the sequence:

i like movies a lot
22120120102102021102

1Original site: http://mattmahoney.net/dc

1



Note that every letter of the same type always receives the same label no matter where it is in the sentence
in this version. Adding the --task BEFOREAFTER flag will run this second version; default is the first
version.
lettercounting-train.txt and lettercounting-dev.txt both contain character strings

of length 20. You can assume that your model will always see 20 characters as input. Different from
Assignment 2, you need to make a prediction at each position in the sequence.

Getting started Run:

python letter_counting.py --task BEFOREAFTER

This loads the data for this part, but will fail out because the Transformer hasn’t been implemented yet. (We
didn’t bother to include a rule-based implementation because it will always just get 100%.)

Part 0 (not graded) Implement Transformer and TransformerLayer for the BEFOREAFTER version of
the task. You should identify the number of other letters of the same type in the sequence. This will require
implementing both Transformer and TransformerLayer, as well as training in train classifier.

Your Part 1 solutions should not use nn.TransformerEncoder, nn.TransformerDecoder, or
any other off-the-shelf self-attention layers. You should only use Linear, softmax, and standard nonlineari-
ties to implement Transformers from scratch.

TransformerLayer This layer should follow the format discussed in class: (1) self-attention (single-
headed is fine; you can use either backward-only or bidirectional attention); (2) residual connection; (3)
Linear layer, nonlinearity, and Linear layer; (4) final residual connection. With a shallow network like this,
you likely don’t need layer normalization, which is a bit more complicated to implement. Because this task
is relatively simple, you don’t need a very well-tuned architecture to make this work. You will implement
all of these components from scratch.

You will want to form queries, keys, and values matrices with linear layers, then use the queries and keys
to compute attention over the sentence, then combine with the values. You’ll want to use matmul for this
purpose, and you may need to transpose matrices as well. Double-check your dimensions and make sure
everything is happening over the correct dimension. Furthermore, the division by

√
dk in the attention paper

may help stabilize and improve training, so don’t forget it!

Transformer Building the Transformer will involve: (1) adding positional encodings to the input (see
the PositionalEncoding class; but we recommend leaving these out for now) (2) using one or more
of your TransformerLayers; (3) using Linear and softmax layers to make the prediction. Different from
Assignment 2, you are simultaneously making predictions over each position in the sequence. Your network
should return the log probabilities at the output layer (a 20x3 matrix) as well as the attentions you compute,
which are then plotted for you for visualization purposes in plots/.

Training follows previous assignments. A skeleton is provided in train classifier. We have al-
ready formed input/output tensors inside LetterCountingExample, so you can use these as your inputs
and outputs. Whatever training code you used for Assignment 2 should likely work here too, with the major
change being the need to make simultaneous predictions at all timesteps and accumulate losses over all of
them simultaneously. NLLLoss can help with computing a “bulk” loss over the entire sequence.

2



Without positional encodings, your model may struggle a bit, but you should be able to get at least 85%
accuracy with a single-layer Transformer in a few epochs of training. The attention maps should also show
some evidence of the model attending to the characters in context.

Part 1 (50 points) Now extend your Transformer classifier with positional encodings and address the
main task: identifying the number of letters of the same type preceding that letter. Run this with python
letter counting.py, no other arguments. Without positional encodings, the model simply sees a bag
of characters and cannot distinguish letters occurring later or earlier in the sentence (although loss will still
decrease and something can still be learned).

We provide a PositionalEncoding module that you can use: this initializes a nn.Embedding
layer, embeds the index of each character, then adds these to the actual character embeddings.2 If the input
sequence is the, then the embedding of the first token would be embedchar(t) + embedpos(0), and the
embedding of the second token would be embedchar(h) + embedpos(1).

Your final implementation should get over 95% accuracy on this task. Our reference implementation
achieves over 98% accuracy in 5-10 epochs of training taking 20 seconds each using 1-2 single-head
Transformer layers (there is some variance and it can depend on initialization). Also note that the
autograder trains your model on an additional task as well. You will fail this hidden test if your model
uses anything hardcoded about these labels (or if you try to cheat and just return the correct answer that you
computed by directly counting letters yourself), but any implementation that works for this problem will
work for the hidden test.

Debugging Tips As always, make sure you can overfit a very small training set as an initial test, inspecting
the loss of the training set at each epoch. You will need your learning rate set carefully to let your model
train. Even with a good learning rate, it will take longer to overfit data with this model than with others
we’ve explored! Then scale up to train on more data and check the development performance of your
model. Calling decode inside the training loop and looking at the attention visualizations can help you
reason about what your model is learning and see whether its predictions are becoming more accurate or
not.

If everything is stuck around 70%, you may not be successfully training your layers, which can happen if
you attempt to initialize layers inside a Python list; these layers will not be “detected” by PyTorch and their
weights will not be updated during learning.

Consider using small values for hyperparameters so things train quickly. In particular, with only 27 char-
acters, you can get away with small embedding sizes for these, and small hidden sizes for the Transformer
(100 or less) may work better than you think!

Exploration Look at the attention masks produced. What is the model doing? Does it match your expec-
tations?

Exploration Try using more Transformer layers (3-4). Do all of the attention masks fit the pattern you
expect?

2The drawback of this in general is that your Transformer cannot generalizes to longer sequences at test time, but this is not a
problem here where all of the train and test examples are the same length. If you want, you can explore the sinusoidal embedding
scheme from Attention Is All You Need (Vaswani et al., 2017), but this is a bit more finicky to get working.

3



Part 2: Transformer for Language Modeling (50 points)

In this second part, you will implement a Transformer language model. This should build heavily off of
what you did for Part 1, although for this part you are allowed to use off-the-shelf Transformer components.

For this part, we use the first 100,000 characters of text8 as the training set. The development set is
500 characters taken from elsewhere in the collection. Your model will need to be able to consume a chunk
of characters and make predictions of the next character at each position simultaneously. Structurally, this
looks exactly like Part 1, although with 27 output classes instead of 3.

Getting started Run:

python lm.py

This loads the data, instantiates a UniformLanguageModel which assigns each character an equal 1
27

probability, and evaluates it on the development set. This model achieves a total log probability of -1644, an
average log probability (per token) of -3.296, and a perplexity of 27. Note that exponentiating the average
log probability gives you 1

27 in this case, which is the inverse of perplexity.
The NeuralLanguageModel class you are given has one method: get next char log probs.

It takes a context and returns the log probability distribution over the next characters given that context as a
numpy vector of length equal to the vocabulary size.

Part 2 Deliverable Implement a Transformer language model. This will require: defining a PyTorch mod-
ule to handle language model prediction, implementing training of that module in train lm, and finally
completing the definition of NeuralLanguageModel appropriately to use this module for prediction.
Your network should take a chunk of indexed characters as input, embed them, put them through a Trans-
former, and make predictions from the final layer outputs.

Your final model must pass the sanity and normalization checks, get a perplexity value less than or
equal to 7, and train in less than 10 minutes. Our Transformer reference implementation gets a perplexity
of 6.3 in about 6 minutes of training. However, this is an unoptimized, unbatched implementation and you
can likely do better.

Network structure You can use a similar input layer (Embedding followed by PositionalEncoding) as in
Part 1 to encode the character indices. You can use the PositionalEncoding from Part 1. You can then use
your Transformer architecture from Part 1 or you can use a real nn.TransformerEncoder,3 which is
made up of TransformerEncoderLayers.

Note that unlike the Transformer encoder you used in part 1, for Part 2 you must be careful to use a causal
mask for the attention: tokens should not be able to attend to tokens occurring after them in the sentence,
or else the model can easily “cheat” (consider that if token n attends to token n+1, the model can store the
identity of token n + 1 in the nth position and predict it at the output layer). Fortunately it should be very
easy to spot this, as your perplexity will get very close to 1 very quickly and you will fail the sanity check.
You can use the mask argument in TransformerEncoder and pass in a triangular matrix of zeros /
negative infinities to prevent this.

Training on chunks Unlike in Part 1, you are presented with data in a long, continuous stream of charac-
ters. Nevertheless, your network should process a chunk of characters at a time, simultaneously predicting
the next character at each index in the chunk.

3https://pytorch.org/docs/stable/generated/torch.nn.TransformerEncoder.html

4



You’ll have to decide how you want to chunk the data for both training and inference. Given a chunk,
you can either train just on that chunk or include a few extra tokens for context and not compute loss over
those positions. This can improve performance a bit because every prediction now has meaningful context,
but may only make a minor difference in the end.

Start of sequence In general, the beginning of any sequence is represented to the language model by a
special start-of-sequence token. For simplicity, we are going to overload space and use that as the start-
of-sequence character. That is, when give a chunk of 20 characters, you want to feed space plus the first
19 into the model and predict the 20 characters.

Evaluation Unlike past assignments where you are evaluated on correctness of predictions, in this case
your model is evaluated on perplexity and likelihood, which rely on the probabilities that your model returns.
Your model must be a “correct” implementation of a language model. Correct in this case means that
it must represent a probability distribution P (wi|w1, . . . , wi−1). You should be sure to check that your
model’s output is indeed a legal probability distribution over the next word.

Batching Batching across multiple sequences can further increase the speed of training. While you do not
need to do this to complete the assignment, you may find the speedups helpful. As in Assignment 2, you
should be able to do this by increasing the dimension of your tensors by 1, a batch dimension which should
be the first dimension of each tensor. The rest of your code should be largely unchanged. Note that you only
need to apply batching during training, as the two inference methods you’ll implement aren’t set up to pass
you batched data anyway.

Tensor manipulation np.asarray can convert lists into numpy arrays easily. torch.from numpy
can convert numpy arrays into PyTorch tensors. torch.FloatTensor(list) can convert from lists
directly to PyTorch tensors. .float() and .int() can be used to cast tensors to different types.
unsqueeze allows you to add trivial dimensions of size 1, and squeeze lets you remove these.

Exploration Try to use your Transformer from Part 1 for Part 2. Note: you will probably have to imple-
ment multi-head self-attention in order to get it to work well, so you may want to experiment with that as
well!

Deliverables and Submission

You will upload your code for Part 1 and Part 2 on Gradescope in two separate files.
Make sure that the following commands work (for Parts 1 and 2, respectively) before you submit and you

pass the sanity and normalization checks for lm.py:

python letter counting.py

python lm.py --model NEURAL

These commands should run without error and train in the allotted time limits.

5



References

Tomas Mikolov, Ilya Sutskever, Anoop Deoras, Hai-Son Le, Stefan Kombrink, and Jan Cernocký. 2012. Subword
Language Modeling with Neural Networks. In Online preprint.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and
Illia Polosukhin. 2017. Attention Is All You Need. In arXiv.

6


