CS388 Natural Language Processing: Final Project

Collaboration You are free to work on this project in teams of two (encouraged) or individually. Indi-
vidual projects can be less ambitious but should not be less complete: a half-implemented system does not
make a good project outcome. All partners should contribute equally to the submission, and all partners will
receive the same grade for it. You are also free to discuss your project with others in the course, though
only the people on your team should contribute to the actual implementation/experimentation involved. Any
external resources used must be clearly cited.

1 Project Spec: Analyzing and Mitigating Dataset Artifacts

Pre-trained models can often achieve high performance on benchmark datasets, but are they really “solving”
the tasks these datasets encapsulate? Sometimes a model can work extremely well even when presented with
a modified version of the input where it should not be possible to predict the right answer, like hypothesis-
only baselines in NLI (Poliak et al., 2018)), which calls into question what the model is even learning.
Sometimes it is possible to find or construct examples very similar to those in the training data where the
model achieves surprisingly low performance. These include “contrast examples” (Gardner et al., 2020)
which are produced by modifying real examples in a small way, as well as adversarial examples (Jia and
Liang, 2017) and checklist examples (Ribeiro et al., 2020).

These observations all stem from the fact that a model may achieve high performance on a dataset by
learning spurious correlations, also called dataset artifacts. The model is then expected to fail in settings
where these artifacts are not present, which may include real-world testbeds of interest.

Your task is to investigate the performance of a pre-trained model on a task of your choice. We recommend
one of the following datasets from either natural language inference (NLI) or question answering (QA):

1. The Stanford NLI dataset (Bowman et al., 2015)

2. MultiNLI (Williams et al., 2018)

3. SQuAD (Rajpurkar et al., 2016)

4. HotpotQA (Yang et al., 2018))
You will analyze the model’s performance and shortcomings, try to improve it, and describe whether
what you did fixed things.
1.1 Part 1: Analysis

You should start by training a model on your selected dataset and doing some analysis of it. We provide
starter code for this. We recommend using the ELECTRA-small (Clark et al., 2020) model; ELECTRA
has the same architecture as BERT with an improved training method, and the small model is computation-
ally easier to run than larger models. However, you are free to use any model you’d like. See Section[I.3|for
details on the starter code.

There are many ways to conduct this analysis:

¢ (changing data) Use contrast sets (Gardner et al., 2020), either ones that have already been constructed
or a small set of examples that you hand-design and annotate

e (changing data) Use checklist sets (Ribeiro et al., 2020)

¢ (changing data) Use adversarial challenge sets (Jia and Liang, 2017; Wallace et al., 2019; Bartolo et
al., 2020; |Glockner et al., 2018; McCoy et al., 2019)

e (changing model) Use model ablations (hypothesis-only NLI, a sentence-factored model for multi-
hop question answering, a question/passage only model for QA) (Poliak et al., 2018; |Chen and Durrett,
2019; [Kaushik and Lipton, 2018])

o (statistical test) Use the “competency problems” framework: find spurious n-gram correlations with
answers (Gardner et al., 2021)

We recommend you briefly skim the abstracts of papers for 2-3 of these approaches to see what makes
sense. You won’t have time to investigate all of these, so an important part of the process is prioritizing what
you want to try and assessing whether it makes sense for the dataset you’re exploring.

Writeup In your writeup, you should (1) give some examples of both specific errors/behavior from the
model as well as analysis or discussion of the general class of mistakes the model makes. For charac-
terizing the general class, try to come up with rules that can identify a set of challenging examples (e.g.,
“examples containing not”) and try to visualize in charts, graphs, or tables what you believe to be relevant
statistics about the data. This part of the report should probably be at least a page long.

1.2 Part 2: Fixing it
Pick a method to try and improve the issues you identified in Part 1. Some options are listed below:

e Focusing learning on hard subsets of data or data where the gold label distribution is ambiguous.
Dataset cartography (Swayamdipta et al., 2020) is a good framework for identifying such examples,
but there are many options (Yaghoobzadeh et al., 2021; Nie et al., 2020; Meissner et al., 2021).

e Ensemble-based debiasing using artifact experts: train a weak or partial model to learn the correlations,
then train your model to learn the residual of that model (He et al., 2019) or otherwise remove it from
output distribution (Clark et al., 2019; [Zhou and Bansal, 2020; Utama et al., 2020; |Sanh et al., 2021)).

e Training on adversarial data, including using challenge sets directly or adversarial data augmentation
(Liu et al., 2019} [Zhou and Bansal, 2020; Morris et al., 2020)

o Contrastive training (Dua et al., 2021)

You are allowed to use open-source GitHub repositories associated with these papers. If you do choose to
build on a repository used in other work, you should consider running on another dataset, trying some twists
on their methodology, analyzing across different dimensions, or other modifications. If you do not choose
to follow an existing repository, it’s fine to structure your report as a reproduction effort. In this case,
you might describe how your results differ from theirs.

Writeup Evaluate your fix. How effective is it? Did you manage to address the errors you were targeting?
How broad was this fix; did it address other related errors or issues as well? Did it make overall dataset
performance go up or down? It will be very hard to get overall much stronger performance on an in-
domain test set, but we expect that well-implemented projects should be able to show some improvement
either on a subset of examples or on generalization to a challenging setting.

You don’t need to answer all these questions, but for what you try to answer, you should both compute
accuracy numbers and show deeper analysis and visualization to back that up. For example, if your change
made the model better on challenging NLI examples, you could try to quantify that on one or more slices
of the data, give examples of predictions that are fixed, or even use model interpretation techniques to try to
support claims about how your improved model is doing its “reasoning.”

The analysis of your results is critical. You should think about your evaluation plan before diving into
Part 2 and have a plan for what kinds of improvements or changes you expect to be able to show. If you feel
like your change will have a very limited impact and not show up on any of the criteria you evaluate for, you
may want to try something different. Alternatively, maybe your change fixes a small but important class of
examples; it might improve performance on the hardest 10% of examples in the dataset. If you can show
this, it’s a fine outcome!

1.3 Getting Started

Installation instructions Please follow the instructions in the GitHub repository here: https://github.
com/gregdurrett/fp-dataset—-artifacts

Starter code In the repository above, you’ll find run . py, a script which implements basic model train-
ing and evaluation using the HuggingFace transformers library. For information on the arguments
to run.py and hints on how to extend its behavior, see the comments in the source and the repository’s
README.

Note that you do not have to use the provided training script; you can also fine-tune the model with a
training loop like the one from previous assignments[]

HuggingFace The skeleton code is heavily based on HuggingFace t ransformers, which is an open-
source library providing implementations of pre-trained deep learning models for a variety of (mainly NLP)
tasks. If you want to get more familiar with t ransformers, you can check out the examples in their
GitHub repository.

Computational resources Even with the ELECTRA-small model, training with CPU only on a large
dataset like SNLI or SQuAD can be time-consuming. Please see the section on compute and feasibility at
the end of the project spec for some options.

1.4 Example

Consider following up on the Dataset Cartography paper (Swayamdipta et al., 2020). If you use their
repository rather than reimplementing the technique yourself, you should explore using the technique on a
different dataset than the one they considered (e.g., consider applying it to the SQuAD dataset). Here are
some further questions you might ask:

1. By using this technique, you can split the dataset into three subsets: easy-to-learn, hard-to-learn, and
ambiguous; do the examples in each subset share something in common? What makes the examples
hard to learn or easy to learn? What is the role each subset plays during training?

'nttps://huggingface.co/transformers/custom_datasets.html#fine-tuning-with-native-pytorch-tensorfl

https://github.com/gregdurrett/fp-dataset-artifacts
https://github.com/gregdurrett/fp-dataset-artifacts
https://github.com/huggingface/transformers/tree/master/examples/pytorch
https://huggingface.co/transformers/custom_datasets.html#fine-tuning-with-native-pytorch-tensorflow

2. For the hard-to-learn and ambiguous examples, is there a way to make learning “pay more attention” to
them? You can consider approaches beyond what they explore in their work, including data augmenta-
tion or soft reweighting of the dataset.

1.5 Scope

The “fix” you try does not strictly need to work in order to have a successful project. However, if it doesn’t
work, you should have a plan for how to analyze it and be able to dig into the data more. Just saying “I tried
X and wrote 100 lines of code but it still crashes” is not a good project outcome. Try to make sure you’re
on track to have some preliminary results or analysis supporting what you’re trying to do a week or two out
from the deadline. From there, make sure that even if things don’t work, you can still argue (a) that you’ve
correctly implemented what you set out to implement; (b) you can analyze the results to understand why
things went wrong.

Note that you may not end up writing all that much code for this project. There may be great projects
that really only involve modifying or adding 20 lines code on top of the implementation we give you. Much
more of the work lies in (a) studying the data; (b) understanding the modifications you’re making; (c)
analyzing your fix.

One person vs. two person projects If you’re working in a group of two, we expect the work to scale up
appropriately.

As a single-person project: You probably want to stick closer to the settings discussed in prior work, or
try a more straightforward method to modify the model training. You are still expected to carry out the same
basic analyses, but they do not need to be as detailed.

As a two-person team: You might want to try a more sophisticated modification to the basic modeling
framework, or you could even try two different modifications to tackle the same problem (or two variants of
the same modification). Your analyses are expected to be more in-depth than for a one-person project.

Compute and Feasibility See the end of the project spec for more discussion about this.

2 Deliverables and Grading

Code You should submit any code you wrote on the project due date, but this is for documentary pur-
poses only; we will not be attempting to verify your results by running the code. Please do not include large
data files or external resources you used that might be needed to execute it.

Final Report The primary deliverable is a paper written in the style of an ACIE}’N eur[PS/etc. conference
submission It should begin with an abstract and introduction, clearly describe the proposed idea or explo-
ration, present technical details, give results, compare to baselines, provide analysis and discussion of the
results, and cite any sources you used.

This paper should be between 3 and 8 pages excluding references. Different projects may take different
numbers of pages to describe, and it depends on whether you’re working by yourself or in a group. If you
have lots of analysis and discussion or are trying something more ambitious, your paper might be longer; if
you’re implementing something complex but succinctly described, your paper might be shorter.

2Style files available here: http://www.acl2019.0rg/EN/call-for-papers.xhtml

3TheIyyeretal.paperisagoodexampleofthis: https://people.cs.umass.edu/~miyyer/pubs/2015_acl_
dan.pdf

http://www.acl2019.org/EN/call-for-papers.xhtml
https://people.cs.umass.edu/~miyyer/pubs/2015_acl_dan.pdf
https://people.cs.umass.edu/~miyyer/pubs/2015_acl_dan.pdf

Your project is not graded solely on the basis of results. You should approach the work in such a way
that success isn’t all-or-nothing. You should be able to show results, describe some successes, and analyze
why things worked or didn’t work beyond “my code errored out.” Think about structuring your work in a
few phases so that even if everything you set out to do isn’t successful, you’ve at least gotten something
working, run some experiments, and gotten some kind of results to report.

Grading: We will grade the projects according to the following rubric:

e Scope (25 points): Is the idea of sufficient depth for a course project? While your idea or fix does not
have to work wonderfully, you will lose points here if all you can show is shallow analysis of the base
system.

e Implementation (30 points): Is the implementation described reasonable? Is the idea itself technically
sound? You might lose points here if we perceive there to be a technical error in your approach. For
example, perhaps you tried to modify neural network training in a way that is totally unconnected to
your stated goal, or your modification was otherwise erroneous.

o Results/Analysis (30 points) Whether the results are positive or negative, try to motivate them by
providing examples and analysis. If things worked, what types of errors are reduced? If things didn’t
work, why might that be? What aspects of the data/model might not be right? There are a few things
you should report here: Key results: You should report results from a baseline approach (your initial
trained model) as well as your “best” method. If doing your own project, baselines such as majority
class, random, or a linear classifier are important to see. Ablations: If you tried several things, analyze
the contribution from each one. These should be minimal changes to the same system; try running
things with just one aspect different in order to assess how important that aspect is.

o Clarity/Writing (15 points): Your paper should clearly convey a core idea/hypothesis, describe how
you tested it/what you built, and situate it with respect to related work as best you can. Abstract and
Introduction: Did you provide a clear summary of the motivation, methodology, and results? Method:
Is the presentation of what was done clear? Results: Is the work experimentally evaluated? Are there
clear graphs and tables to communicate the results? Don’t just inline 1-2 numbers; make your analysis
more detailed than that.

Peer Assessment Your work will go through a peer assessment phase. You will be grading on a discretized
version of the above scale; scores 1-5 in each category will be mapped onto these grade ranges. These
grades will be considered as one input, but the final grades will be assigned by the course staff.

3 Compute and Feasibility

Large neural net methods can be slow to train! Training a model on even 10,000 QA examples can take
hours (when running only on CPU). Keep this in mind when deciding what kind of project to do.

The most important thing is to only run large-scale experiments when needed. Debug things on small
amounts of data. Depending on what dataset you have and what resources you’re using, you may need to
let your initial model train for 5-15 hours to get a usable initial result, and your final experiments may be
similarly time-consuming, but ideally much of what you do in the middle won’t need to involve waiting
hours for models to train.

Using Checkpoints The HuggingFace trainer checkpoints the models periodically. As a result, you can
start a long training run, leave it going for several hours, and evaluate how much of that time was actually
needed to get good performance. If it worked well after only two hours, you’ll know that for the future.
Ideally, you can then do further experimentation more quickly or even start future runs from checkpoints.

GCP Google Cloud Platform offers free credits upon signing up for a new account, which are more than
sufficient to run some large-scale experiments for the course. The course staff are able to provide limited
support on how to use GCP, but you’ll mostly have to figure this out yourself.

Google Colab Google Colab is another resource for exploring training on GPUs. You can see how to get
started with HuggingFace on Colab here: https://github.com/huggingface/transformers/
tree/master/notebooks

You can also look into Colab Pro, which is a paid membership but gives you access to more resources.
As of November 2021, it’s $9.99 per month.

References

[Bartolo et al.2020] Max Bartolo, Alastair Roberts, Johannes Welbl, Sebastian Riedel, and Pontus Stenetorp. 2020.
Beat the Al: Investigating Adversarial Human Annotation for Reading Comprehension. Transactions of the Asso-
ciation for Computational Linguistics, 8:662-678.

[Bowman et al.2015] Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. 2015. A
large annotated corpus for learning natural language inference. In Proceedings of the 2015 Conference on Em-
pirical Methods in Natural Language Processing, pages 632—642, Lisbon, Portugal, September. Association for
Computational Linguistics.

[Chen and Durrett2019] Jifan Chen and Greg Durrett. 2019. Understanding dataset design choices for multi-hop rea-
soning. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 40264032, Minneapolis,
Minnesota, June. Association for Computational Linguistics.

[Clark et al.2019] Christopher Clark, Mark Yatskar, and Luke Zettlemoyer. 2019. Don’t take the easy way out: Ensem-
ble based methods for avoiding known dataset biases. In Proceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-1JCNLP), pages 4069-4082, Hong Kong, China, November. Association for Computational Linguistics.

[Clark et al.2020] Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christopher D. Manning. 2020. ELECTRA: Pre-
training Text Encoders as Discriminators Rather Than Generators. In Proceedings of the International Conference
on Learning Representations (ICLR).

[Dua et al.2021] Dheeru Dua, Pradeep Dasigi, Sameer Singh, and Matt Gardner. 2021. Learning with instance bundles
for reading comprehension.

[Gardner et al.2020] Matt Gardner, Yoav Artzi, Victoria Basmova, Jonathan Berant, Ben Bogin, Sihao Chen, Pradeep
Dasigi, Dheeru Dua, Yanai Elazar, Ananth Gottumukkala, Nitish Gupta, Hanna Hajishirzi, Gabriel Ilharco, Daniel
Khashabi, Kevin Lin, Jiangming Liu, Nelson F. Liu, Phoebe Mulcaire, Qiang Ning, Sameer Singh, Noah A. Smith,
Sanjay Subramanian, Reut Tsarfaty, Eric Wallace, Ally Zhang, and Ben Zhou. 2020. Evaluating models’ local
decision boundaries via contrast sets.

[Gardner et al.2021] Matt Gardner, William Merrill, Jesse Dodge, Matthew E Peters, Alexis Ross, Sameer Singh, and
Noah Smith. 2021. Competency problems: On finding and removing artifacts in language data. arXiv preprint
arXiv:2104.08646.

[Glockner et al.2018] Max Glockner, Vered Shwartz, and Yoav Goldberg. 2018. Breaking NLI systems with sen-
tences that require simple lexical inferences. In Proceedings of the 56th Annual Meeting of the Association for

https://github.com/huggingface/transformers/tree/master/notebooks
https://github.com/huggingface/transformers/tree/master/notebooks

Computational Linguistics (Volume 2: Short Papers), pages 650—-655, Melbourne, Australia, July. Association for
Computational Linguistics.

[He et al.2019] He He, Sheng Zha, and Haohan Wang. 2019. Unlearn dataset bias in natural language inference by
fitting the residual. In Proceedings of the 2nd Workshop on Deep Learning Approaches for Low-Resource NLP
(DeepLo 2019), pages 132—-142, Hong Kong, China, November. Association for Computational Linguistics.

[Jia and Liang2017] Robin Jia and Percy Liang. 2017. Adversarial examples for evaluating reading comprehension
systems. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages
2021-2031, Copenhagen, Denmark, September. Association for Computational Linguistics.

[Kaushik and Lipton2018] Divyansh Kaushik and Zachary C. Lipton. 2018. How much reading does reading com-
prehension require? a critical investigation of popular benchmarks. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, pages 5010-5015, Brussels, Belgium, October-November.
Association for Computational Linguistics.

[Liu et al.2019] Nelson F. Liu, Roy Schwartz, and Noah A. Smith. 2019. Inoculation by fine-tuning: A method
for analyzing challenge datasets. In Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),
pages 2171-2179, Minneapolis, Minnesota, June. Association for Computational Linguistics.

[McCoy et al.2019] Tom McCoy, Ellie Pavlick, and Tal Linzen. 2019. Right for the wrong reasons: Diagnosing
syntactic heuristics in natural language inference. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 3428-3448, Florence, Italy, July. Association for Computational Linguistics.

[Meissner et al.2021] Johannes Mario Meissner, Napat Thumwanit, Saku Sugawara, and Akiko Aizawa. 2021. Em-
bracing ambiguity: Shifting the training target of NLI models. In Proceedings of the 59th Annual Meeting of
the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 862—-869, Online, August. Association for Computational Linguistics.

[Morris et al.2020] John X. Morris, Eli Lifland, Jin Yong Yoo, Jake Grigsby, Di Jin, and Yanjun Qi. 2020. Textattack:
A framework for adversarial attacks, data augmentation, and adversarial training in nlp.

[Nie et al.2020] Yixin Nie, Xiang Zhou, and Mohit Bansal. 2020. What can we learn from collective human opinions
on natural language inference data? In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 9131-9143, Online, November. Association for Computational Linguistics.

[Poliak et al.2018] Adam Poliak, Jason Naradowsky, Aparajita Haldar, Rachel Rudinger, and Benjamin Van Durme.
2018. Hypothesis only baselines in natural language inference. In Proceedings of the Seventh Joint Conference on
Lexical and Computational Semantics, pages 180-191, New Orleans, Louisiana, June. Association for Computa-
tional Linguistics.

[Rajpurkar et al.2016] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016. SQuAD: 100,000+
questions for machine comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing, pages 2383-2392, Austin, Texas, November. Association for Computational Lin-
guistics.

[Ribeiro et al.2020] Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin, and Sameer Singh. 2020. Beyond ac-
curacy: Behavioral testing of NLP models with CheckList. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages 4902—4912, Online, July. Association for Computational Lin-
guistics.

[Sanh et al.2021] Victor Sanh, Thomas Wolf, Yonatan Belinkov, and Alexander M Rush. 2021. Learning from others’
mistakes: Avoiding dataset biases without modeling them. In International Conference on Learning Representa-
tions.

[Swayamdipta et al.2020] Swabha Swayamdipta, Roy Schwartz, Nicholas Lourie, Yizhong Wang, Hannaneh Ha-
jishirzi, Noah A. Smith, and Yejin Choi. 2020. Dataset cartography: Mapping and diagnosing datasets with
training dynamics. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 9275-9293, Online, November. Association for Computational Linguistics.

[Utama et al.2020] Prasetya Ajie Utama, Nafise Sadat Moosavi, and Iryna Gurevych. 2020. Towards debiasing NLU
models from unknown biases. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 7597-7610, Online, November. Association for Computational Linguistics.

[Wallace et al.2019] Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gardner, and Sameer Singh. 2019. Universal
adversarial triggers for attacking and analyzing NLP. In Proceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-1JCNLP), pages 2153-2162, Hong Kong, China, November. Association for Computational Linguistics.

[Williams et al.2018] Adina Williams, Nikita Nangia, and Samuel Bowman. 2018. A broad-coverage challenge cor-
pus for sentence understanding through inference. In Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Pa-
pers), pages 1112-1122, New Orleans, Louisiana, June. Association for Computational Linguistics.

[Yaghoobzadeh et al.2021] Yadollah Yaghoobzadeh, Soroush Mehri, Remi Tachet des Combes, T. J. Hazen, and
Alessandro Sordoni. 2021. Increasing robustness to spurious correlations using forgettable examples. In Pro-
ceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main
Volume, pages 3319-3332, Online, April. Association for Computational Linguistics.

[Yang et al.2018] Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov, and
Christopher D. Manning. 2018. HotpotQA: A dataset for diverse, explainable multi-hop question answering. In
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 2369-2380,
Brussels, Belgium, October-November. Association for Computational Linguistics.

[Zhou and Bansal2020] Xiang Zhou and Mohit Bansal. 2020. Towards robustifying NLI models against lexical dataset
biases. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 8759—
8771, Online, July. Association for Computational Linguistics.

	Project Spec: Analyzing and Mitigating Dataset Artifacts
	Part 1: Analysis
	Part 2: Fixing it
	Getting Started
	Example
	Scope

	Deliverables and Grading
	Compute and Feasibility

