
Characters, Embedding Concatenation, and Span Filtering for better QA
models across domains

Author
Name Here

EID
EMAIL

Abstract

This paper contributes 3 moderate changes
to the Baseline Model given. Firstly a
character embedding layer, a method of
combining embeddings, and finally a sim-
ple NER system to filter spans via weight-
ings. We show that each of these changes
will improve the accuracy of the model
for both in-domain and cross-domain
datasets. Furthermore, we will demon-
strate why these improvements have sig-
nificant impact on the model and how fu-
ture work could result in improved mod-
els not only for the Baseline Model but
for state of the art models like Electra in
common applications such as Amazon’s
Alexa.

1 Introduction

Most modern systems have understood that under-
standing context with word embeddings can be a
powerful tool, and furthermore, character embed-
dings can help to increase performance. The Base-
line model lacks character embeddings and thus
suffers from out-of-vocabulary (or new) words.
Another disadvantage of the Baseline Model the
lack of intelligent span (or answer) filtering. How-
ever, even state-of-the-art models can struggle in
validating their answer or giving intuitive reasons
as to why the model predicted a certain span over
another. This introduction section will cover each
of these problems individually and in order, with
a final section that briefly describes the overall
structure of this paper.

1.1 Embeddings and Understanding

Intuitively, when someone is fluent in a language,
understanding a language becomes more than un-
derstanding individual words as a whole. Fluent
speakers are often able to piece together meaning

by the pieces of the word itself and in fact this kind
of understanding is often studied in various fields
of linguistics like Morphology. The benefit of hav-
ing such a rich knowledge of a language and how
its words are formed allows an individual to in-
tuit the meaning of a new word that the individual
has not encountered before. Using context clues
as well as the morphology of the word, the indi-
vidual will be able to come up with some meaning
for that unknown word. Even if the understand-
ing of an unknown word is not entirely accurate
it’s often better than a random guess or ignoring it
entirely.

The Baseline Model in its current implementa-
tion is able to extract the fluent speakers equivalent
“context clues” through word embeddings; how-
ever, it does not look at the internal structure of
the words. This means that the Baseline Model
will fail on passages and questions that include
too many words that were not seen in the train-
ing data. By embedding characters and words and
then combining those two vectors, the model is
able to become apt at distinguishing meaning from
text even if that text contains mostly new words.

Naturally the question is how to best represent
character embeddings to the model. The BiDAF
model (Minjoon et al., 2018), which is tested in
this paper, uses a convolutional network (Yoon
Kim, 2014) to create the embeddings and then a
highway network (Rupesh Kumar et al., 2015) to
combine the character and word embeddings into
one representation that the model can use. How-
ever, in this paper, we show that creating a network
that mixes word embeddings and character embed-
dings could be detrimental to the overall perfor-
mance of the model.

1.2 Question Understanding

When a person is posed a question, oftentimes
the individual answering the question has some
idea of what the answer should ”look” like. That



doesn’t mean the individual knows the answer
right away, but rather has a template like structure
that would reject ridiculous answers that don’t fit
into the template. For example, if someone were to
ask for person X’s age, the expected answer would
be a number and not a location. Beyond the for-
mation of a template for an answer, people often
are able to distinguish when a question is mal-
formed and requires clarification before an answer
can be proposed. Following the same example, if
the question was for person X’s age, but all the
potential answers were locations - a person would
be able to consult with the who ever is asking the
question and get more details to help clarify the
confusion.

This poses an interesting problem for the Base-
line Model as well as current state-of-the-art mod-
els. How can a model check if its answer makes
sense given the question, and how can a model
know when to ask for clarification? A few state-
of-the-art models are already attempting to answer
this question of validating the answer for datasets
like SQuAD2.0 (Zhang et al., 2020), though fo-
cused almost exclusively on the ability to answer
a question given a passage or not.

Our model shows that you can get small, but not
negligible, improvements by validating the type
of question and the expected answer using a very
small template of question types. The goal be-
ing to create a mapping from question to answer
types. Once the model has an expected answer
type, each potential answer span is adjusted ac-
cording to what type of entities are inside of it.
If the span includes entities that match the an-
swer type, that span should be rewarded and for
spans that include opposing entities or no enti-
ties should likewise be penalized. The proposed
change in this paper produces small improvements
to the overall accuracy, but what is more promis-
ing is the intuition from this experiment for later
tests and improved models.

1.3 Outline

This subsection briefly covers the flow of the pa-
per and what each section covers. Section 2 ex-
plicitly states each proposed change explored in
this paper. Section 3 covers the implementation
of each improvement including the original explo-
ration and structure of the improvement. Section
4 covers the ablations of each improvement and
how it affected the performance. Section 5 covers

the results of the model comparing it against the
baseline in all datasets with an analysis. Section
6 covers the discussion of the improvements, why
they enhance the model, hypothesis on how to fur-
ther improve each modification, and a suggestion
to make the model more versatile for state-of-the-
art-models like Electra. Finally, Section 7 is the
conclusion of the entire paper.

2 Proposals

We propose a total of 3 changes to the Baseline
Model. First, a character embedding layer us-
ing a convolutional network to address the prob-
lem of out-of-vocabulary words. Second, a bet-
ter method of combining word and character level
embeddings to address the problem of how models
represent questions and passages in QA. Lastly, a
weighting scheme to help filter out bad spans us-
ing a NER system to address interpret-ability as
well as confidence levels in a models answer.

3 Implementation Details

This section explores the implementation details
of the Character Embedding Layer, Concatenation
Method, and Span Weighting With NER in this or-
der.

3.1 Character Embedding Layer

The first implemented improvement to the Base-
line Model is to allow for character embeddings,
which requires changes to both the Preprocessing
steps and Inference steps of the model. First, each
word in each question and passage is decoded into
a vector of length 24 (this is configurable) where
each value of that vector ranges between 0 and 27.
Each value in that vector represents a character in
numerical form except for 0 which is used as a
padding character for unknown characters or for
words that are smaller than 24 characters. To get
their numerical values, each character is mapped
to a lookup table that just includes characters [a-z]
(Yoon Kim, 2014),

This is a hyper-parameter that could be fur-
ther tuned and if needed could encapsulate all En-
glish characters to better fit cross domain datasets.
However, for the purposes of this project, a simple
a-z character lookup table was sufficient. Just to
be clear, a vector for the word “cat” would be [3,
1, 2, 0, ...]

This format of embedding words into character
feature vectors worked well for our implementa-



tion though there are other ways of doing it worth
mentioning, for example, one-hot vector encod-
ings per character. However, this concise method
worked best for this implementation.

Once the character feature vector reaches the
PyTorch model, it is first passed into an embed-
ding layer. The embedding dimension has 27 pos-
sible values (26 for the alphabet and 1 for the
padding character), it reduces each feature vector
to a vector of length 8. Besides the size of the in-
put vector, these values are able to be tuned and
could produce better accuracy if adjusted effec-
tively. However, the model that worked best for
this project was with an embedding layer of size
8.

Although the characters are technically embed-
ded, they are not taking into account the characters
around them nor are they extracting features about
the composition of words from various combina-
tions of characters. I.E. “ed” combined is usually
an inflection of a verb, this is not present yet in the
embedding feature vector. To accomplish this, our
model, further embeds the characters with a Con-
volutional Layer (Minjoon et al., 2018). However,
to convolve over the characters, the data has to be
mutated to fit the input of the CNN Layer.

The convolutional layer wants the batch size
and sequence vectors to form a matrix and be com-
bined into a single dimension with the character
embeddings (8 in our model) form the next axis.
The last dimension specifies the size of the kernel
that is to go over the Batch size * Context length,
1, Character dimension matrix. Something that
might help intuit why this is, is to think of the first
two dimensions as an image matrix that the layer
will slide a convolutional kernel over trying to find
a matching pattern.

After the convolution layer our model imple-
ments a max pooling layer which will take the
most significant features. The last step is to re-
shape the data yet again to match that of the word
embeddings.

3.2 Concatenation Method

Although this is the smaller of the three changes,
it warrants its own section because of the signif-
icant impacts on performance. Our experimenta-
tion and resulting model has three modes that can
be used to combine the word embeddings with the
character embeddings. They are 80/20, highway,
and Concat. The 80/20 mode was the first imple-

mentation choice, it takes the word embedding and
weights that vector by 0.8, then it takes the charac-
ter embeddings and weights those by 0.2, with the
resulting weighted vectors the model sums them
up for the resulting question and passage embed-
dings.

80/20 method of combining the word and char-
acter embeddings did not do too well in the end.
Although it did provide improvements to the over-
all accuracy it was far behind the highway model.
The highway model was inspired by (Rupesh
Kumar et al., 2015) and it is the implementa-
tion in the original BiDAF paper (Minjoon et al.,
2018) which we based the first two changes on.
Our highway model followed closely to what the
BiDAF paper suggested which is a two layer high-
way network that takes both the question and pas-
sages word and character embeddings.

In the highway network, both layers are linear
and of the size two times the embedding dimen-
sion to account for the input being a concatenated
vector of word and character embeddings. The
block layer has an activation function of ReLU
while the gate layer is activated with Sigmoid. The
two layers are combined following the equation in
(Rupesh Kumar et al., 2015) and this is done twice
with two different sets of layers.

The highway network did much better than the
80/20 method of concatenating the two vectors,
but we tried one last method of combining the two
embeddings which ended up being the best way
performance wise and the simplest. The last way
to combine the two vectors was to simply concate-
nate the two together (which is also the first step
for the highway network implementation). This
implementation achieved the highest accuracy at
about 1% better than the highway network.

An important note to these implementations is
that for all of them except the 80/20 method,
all hidden dimensions past the embedding layers
were increased by 2. So some of the benefits
and improvements achieved from the various con-
catenation methods when compared to the 80/20
method could be attributed in part to the increased
network size.

3.3 Span Weighting With NER

Span Filtering using a NER framework supplied
by SpaCY is done post training, during the infer-
ence part of the model. A lot of exploration came
into this section, which was boiled down to a sim-



ple implementation inspired by (Diego Molla et
al., 2006).

Most of the exploration circled around trying to
find out the best way to use a Named Entity Recog-
nition system to better match spans with the an-
swer. Attempting to match named entities from
the question to the answer provides little help be-
cause one, the answer is usually a different en-
tity type than the question posed, and two the dis-
tance from the answer and the matching named
entity could be far depending (so locality won’t
help). However, if you are able to deduce what
type of entity best fits the answer to the question,
you can iteratively go over each of those spans that
includes an entity that would best answer the ques-
tion and choose from those. The challenges with
that type of model is, how do you choose the cor-
rect question type, and how do you choose which
entity labels answer each question.

Essentially our model attempts to decode a
question into one of five question types. This is
done with a simple lookup table for words in the
question that indicate the type of question that is
being asked. For example, question that are look-
ing for a “PERSON” or “ORGANIZATION” of-
ten times include the word “who” in the question
itself. This type of intuition lead our algorithm
to have 5 classes of questions, with about 5 key
words per class. The first class to match is the
class assigned to that question. From there, each
entity in the passage that does not match any of
the labels the question is looking for gets a reduc-
tion in its probability (which acts more like a score
than a probability now) for both start probs and
end probs. This shifts the weight that the spans
will initially look over towards entities that are
part of the question type grouping. Next, any span
selected out of the passage, if the span includes
(partially or entirely) an entity of the type the ques-
tion is looking for, that span is rewarded in its joint
probability (the score of the span). If the span in-
cludes no entities it is penalized and if the span
includes more than 1 entity matching the list it is
penalized lightly (to enforce shorter but still cor-
rect answers)

An important discovery here is the importance
of the NER system being used for this method
of filtering to be efficient. Using SpaCY’s small
model did not find all the named entities in the pas-
sage, which would lead to penalized spans when
they in fact had the correct answer. To remedy

this in our model, we used the best model SpaCY
can offer, its large model, but improvements to the
NER system could still improve the accuracy of
the weighting scheme.

4 Ablations

This section covers various improvements to the
model that were important to the paper. The first is
how each improvement effected the performance
of the model. The second is how the Concate-
nation Method effected the performance of the
model.

4.1 Individual Improvements

EM Scores SQuAD Adversarial Newsqa Bioasq

Baseline 46.14 34.08 18.99 9.24
Embeddings 50.75 37.77 21.32 14.56

NER 50.83 38.05 21.3 14.56

F1 Scores SQuAD Adversarial Newsqa Bioasq

Baseline 58.57 44.63 30.63 16.97
Embeddings 63.54 49.13 33.54 23.29

NER 63.65 49.37 33.54 23.29

Each model was trained on a model with 128
hidden dimension size, 100d word embedding
and character embeddings, using the Concat com-
bination method, bidirectional LSTM using the
SQuAD training dataset.

Each improvement to the model increased the
accuracy with character embeddings giving a
boost of 5.32% and 6.32% to the Bioasq datasets
EM and F1 scores respectively. Minimally the
character embeddings improved the accuracy of
the Newsqa’s EM and F1 scores by 2.33% and
2.91% respectively.

Adding the NER span weighting implementa-
tion on top of the character embedding model
improved the adversarial EM/F1 by 0.28% and
0.24% respectively. However, it negatively im-
pacted the EM score for Newsqa by -0.2%. These
results, although they are consistent, are small
enough to warrant a significance test before any
definitive statements are made.



4.2 Concatenation Methods

EM Scores SQuAD Adversarial Bioasq

Baseline 46.14 34.08 9.24
80/20 48.35 36.77 8.64

Highway 49.95 37.16 13.43
Concat 50.83 38.05 14.56

F1 Scores Squad Adversarial Bioasq

Baseline 58.57 44.63 16.97
80/20 60.92 47.66 17.01

Highway 62.16 46.83 21.37
Concat 63.65 49.37 23.29

Each model was trained with a 128 hidden di-
mension size, 100d word and character embed-
dings, bidirectional LSTM, with character embed-
dings turned on, on the SQuAD data set.

The Concatenation method outperformed all
other variations of combining word and character
embeddings beating out a two layer highway net-
work by as much as 1.3% and 1.92% on the Bioasq
EM/F1 score respectively.

5 Results

Figure 1: Graph showing results of the Baseline
Model and the Best model. Results are compared
against a locally trained Baseline Model. Param-
eters that differ from the defaults for the models
are, 128 hidden dimension size, 100 dimension
embeddings, 100d glove embeddings.

Our model was able to achieve on average a 4%
accuracy increase in both the EM and F1 scores
for all datasets, with the exception of the Newsqa
which received a 2.31% / 2.91% increase to the
EM/F1 scores respectively.

5.1 Analysis

We expected to see a spike in cross domain ac-
curacy with character embeddings because of the
ability to understand words that were not seen dur-
ing training. This was quite evident in the results,
especially with Bioasq which received the high-
est increase in performance at 5.32% / 6.32% for
its EM/F1 respectively. Interestingly, Newsqa, al-
though cross-domain did not receive a much of a
boost. We believe that this can be attributed to two
things from our model. First, the character lookup
table does not account for special characters, and
secondly the we believe that the answers for a lot
of the Newsqa questions are named entities. With
Character Embeddings our model is able to learn
new words from the similar structure of words it
saw during training, but if Newsqa had words that
did not follow a similar structure, names, loca-
tions, organizations, different languages, etc. then
our Character Embedding layer would not be of
much use.

We also saw huge benefits in combining the
Character Embeddings with the Word Embed-
dings directly. Although expanded on further in
the Discussion Section, we could not come up with
a clear cut explanation as to why this method tri-
umph over the others. We do have some intu-
itive explanations that follow in the Discussion,
but mainly we believe it to be related to reading
the passage twice each in a different representa-
tion. We also believe that this phenomena could
be related to training. For instance, the meaning of
a words morphology is usually independent from
the question being asked. One interesting side note
for this improvement is that the 80/20 method ac-
tually hurt the performance of the Bioasq dataset
reducing the accuracy by 0.6%. The reasons for
the decrease could be related to the same reason
why the Highway Network failed to out perform
the Concat method, essentially combining word
and character embeddings are unintuitive to the
model. In the 80/20 method, we assumed the cor-
rect distribution and meaning from the character
and word embeddings, rather than trying to learn
it through a neural network, which is why we think
these results share the similar impact and even hurt
the performance in some cases.

Lastly, the Span Filtering with NER improve-
ment had very small impact, having at 0.28% im-
provement to the Adversarial EM score. Although
this number is small enough to be considered noise



without a proper significance test, the improve-
ments were consistent in the in-domain datasets. It
did not; however, help with cross-domain datasets.
The reason for this is due to the hyper-parameters
we set during our models training process on the
way questions are penalized and rewarded. In
the SQuAD datasets, often times smaller answers
are better than larger ones. Our model penalizes
any span that has more than 1 matching typed
entity because that span is likely to be too long
(the model could pass back the entire passage if
there wasn’t a size limit and the passage was filled
with matching entities). This assumption is not
true for all datasets and infact can hurt the per-
formance on the dataset as seen with the Newsqa
EM score which deceased by 0.02% (again that’s
a very small change, so further significance test-
ing would be required). On top of this, our model
was further tuned to over-fit the SQuAD datasets
because of our implementation and how we were
relating questions to answers. In our implementa-
tion, we expected most questions to contain simple
tells on what the question was asking for, words
like ”who” to indicate a person, or ”where” to indi-
cate a location. Bioasq and Newsqa could be ask-
ing more detailed or nuanced questions that are not
fitting into the correct question template our model
set up. We will talk about how we can overcome
these challenges in the current NER implementa-
tion in the Discussion Section.

6 Discussion

This section is separated by Character Embed-
ding Layer, Concatenation method, Span Weight-
ing with NER, and Answer Type Classification
Model in that order.

6.1 Character Embedding Layer

As expected, the character embeddings improved
the model in all datasets. Even the three vari-
ous ways to combine the character and word em-
beddings all showed improvement over the base-
line which is quite telling on just how important
it is to have a model with character embeddings.
The obvious reason for why character embeddings
helped improve the performance is due to the un-
derstanding of new words through morphology,
this is expressed heavily in the Bioasq dataset be-
cause of the unique vocabulary in it (this is also
the dataset that got the highest improvement in ac-
curacy). There is still a lot to explore with the

character embeddings though. For example, the
embeddings in the proposed model only took into
account letters between a-z, no hyphens, commas,
apostrophes, etc. This is a real limitation of the
model that could improve the model even more
on domains like Newsqa and Bioasq which often
use special characters in their documents. Beyond
that, having a large enough character embedding
layer with enough data from a more varied dataset
could help improve the quality of character em-
beddings. For example, a lot of the names that
might exist in the Bioasq often times follow sci-
entific naming patterns, this type of morphology
is unlikely to be present in the SQuAD training
dataset and thus is lost on the character embed-
ding of this model. However, a 4% performance
increase in the model with a relatively small char-
acter embedding layer is still a high improvement.

6.2 Concatenation Method

As mentioned before, interestingly, the way the
character and word embeddings combined only
improved the model no matter what method was
chosen. However, a simple concatenation of the
two vectors seems to produce the best results. The
80/20 method intuitively makes sense as to why
it under performs because there is an underlying
assumption of how important the data in the two
vectors are. Neural Networks (in this case a High-
way Network) would allow us to better understand
the relationship between the characters and rep-
resent their relationship if it were complex. This
sounds like the prime implementation, however, it
performs against the Concat method. It could be a
sign that the morphology and context clues of the
words in the sentence do not share a complex re-
lationship in question and answering. Intuitively
this explanation makes a bit of sense, because a
person reading a sentence usually doesn’t look at
the morphology of the first word to better under-
stand the last. Instead, people use the morphology
of the word only to better understand that single
word (usually). In this case, concatenation may be
the best implementation for a QA model, its able
to see the context twice, once in the word embed-
ding format and then again in the character for-
mat. Although the explanation lacks a mathemati-
cal theory, perhaps “reading” the context twice in
two different forms is helping the model make cor-
rect associations with the input when faced with
words outside of its vocabulary.



6.3 Span Weighting With NER

The least impactful change, but the one that leads
to interesting insights, is the span weighting using
a NER system during inference. The implementa-
tion in the proposed model is lack-luster and most
likely under performing on datasets other than the
adversarial and SQuAD dev datasets due to overfit
parameters for questions in that domain. A good
example of this is answer length. Currently the
model rewards answers with one, and only one,
entity that matches the expected answer label of
the question. In the case of the SQuAD datasets,
this was optimal as a lot of the answers had var-
ious forms that mostly included only one or two
named entities in them. However, this is not the
case for answers in the Newsqa or Bioasq datasets
which is why the performance is stagnant or worse
on those.

6.4 Answer Type Classification Model

Span weighting can be improved in various ways,
but the one that seems most promising is some-
thing akin to the model proposed in (Zhang et al.,
2020). In their paper, they use a model that at-
tempts to guess if a question has an answer, and if
not, it elects to return a separate answer from any
of the given spans (in their case the null string).
We propose an improvement that would consist of
a new layer that takes the embeddings of a ques-
tion and produces an expected answer label as out-
put. Interestingly, although we did not find any
datasets that had labels for questions -¿ answer
type due to “answer type” being subjective to the
NER system being used, we did come up with a
solution to train without having to use any other
data. During training, the ground truth labels need
to be updated with a NER systems entity labels for
any entity inside of that ground truth span. This al-
lows, with slight modification of the training data,
for the model to learn not only what words are
likely to be in the span, but also what entity labels
should be in the span. An important distinction
though, is that this layer does not impact span log-
its, it only predicts the expected answer type from
a question, in this way, the model produces 3 out-
puts, start logits, end logits, and expected entity
type. From there, the implementation of span fil-
tering can look for spans that are close to the entity
that the model predicts the question wants.

Implementing a model that predicts entity types
would have tremendous impacts, if it was able to

Figure 2: Simple example model for how a Read-
ing Comprehension model could be constructed to
produce both span logits and an answer type label.
The outputs are then passed into a span filtering
algorithm that attempts to match entities from a
NER system with the answer types predicted from
the model. It’s important to note that the answer
type labels and the NER system entities have to be
from the same schema, i.e. for training we suggest
using the same NER system to produce training
labels and for predicting entities in the passage.

predict the entities reliably which is mostly de-
pendent on the NER system being used in the
first place. Beyond improving accuracy on ques-
tions, which as seen in this experiment results in
smaller accuracy impacts, this model could pro-
duce more information into why a specific span
was returned as the answer. Debugging a QA
system would become easier if the model under-
stood what type of question it was trying to an-
swer and the debugger could easily spot what the
model thought the question was asking for. As
of now, modern models hide the interpretation of
the question until the span is selected, this model
would allow for more insight into that learned de-
cision. Secondly, a model like this could be imple-
mented to ask for further clarification on the ques-
tion if all the spans included entities sufficiently
far enough away from the entity predicted. This
would be extremely helpful in systems like Siri,
Alexa, etc. for when they are unsure about a ques-
tion due to noise in the voice to text translation
layers, or for co-reference resolution issues. It
could also help in discourse, if intelligent systems
wish to carry longer conversations with humans,
they would have to behave more like humans in
that even a great listener has to ask what some-
one means from time to time. This model could
easily track when its answers are becoming less



confident and ask for more input to establish bet-
ter confidence in its answers.

7 Conclusion

Our model saw an improvement of on average 4%
with the three changes proposed. With a clear
impact from character embeddings, showing that
understanding the structure of a word is incredi-
bly important. The results also suggest that there
may be a benefit in digesting the word embeddings
and character embeddings twice as reflections of
the same input, which would go against what is
suggested in the BiDAF model (Minjoon et al.,
2018). Finally, although not as impactful, a span
weighting mechanism can help important impacts
in validation and explanation as well as clarifica-
tion methods for future systems.

References
Zhuosheng Zhang, Junjie Yang, and Hai Zhao 2020.

Retrospective Reader for Machine Reading Compre-
hension, https://arxiv.org/abs/2001.09694

Bowen Wu, Haoyang Huang, Zongsheng Wang, Qi-
hang Feng, Jingsong Yu, Baoxun Wang. 2019. Im-
proving the Robustness of Dee Reading Comprehen-
sion Models by Leveraging Syntax Prior. Associa-
tion for Computational Linguistics:53–57

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi,
Hananneh Hajishirzi. 2018. Bi-Directional
Attention Flow For Machine Comprehension,
https://arxiv.org/abs/1611.01603

Yoon Kim. 2014. Convolutional Neu-
ral Networks for Sentence Classification.
https://arxiv.org/abs/1408.5882

Rupesh Kumar Srivastava, Klaus Greff, Jürgen
Schmidhuber 2015. Highway Networks.
https://arxiv.org/abs/1505.00387

Diego Molla, Menno van Zaanen and Daniel Smith
2006. Named Entity Recognition for Question An-
swering. Proceedings of the Australasian Language
Technology Workshop 2006:51–58


