Refining Generative Grammars

Parser Evaluation

» View a parse as a set of labeled
brackets / constituents
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» Precision: number of correct predictions / number of predictions = 2/3
» Recall: number of correct predictions / number of golds =2/4
» F1: harmonic mean of precision and recall = (1/2 * ((2/4) + (2/3)™1))?

=0.57 (closer to min)

Results

» Standard dataset for English: Penn Treebank (Marcus et al., 1993)

» “Vanilla” PCFG: ~75 F1

» Best PCFGs for English: ~90 F1

» State-of-the-art discriminative models (using unlabeled data): 95 F1

» Other languages: results vary widely depending on annotation +

complexity of the grammar

Klein and Manning (2003)
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» Language is not context-free: NPs in different contexts rewrite differently ( )

» [They]ne received [the package of books]ne » Why is this a good idea?
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Lexicalized Parsers
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» Even with parent annotation, these trees have the same rules. Need to
use the words

Lexicalized Parsers

» Annotate each grammar symbol with PN
its “head word”: most important N,
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» Rules for identifying headwords (e.g., . )
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Discriminative Parsers
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» Features: I[first word = saw & VP]
I[last word =it & VP]
I[word before span = She & VP]

» ...or use neural networks

» Score constituents with a feature-based model

» Simple version of this model: Train a span classifier to predict type of
span or NONE if it’s not in the tree

Discriminative Parsers
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» CKY: instead of rule probabilities, maximize sum of scores of the spans
included in a tree

» Why is CKY still necessary? Why can’t we just independently label spans
with our classifier?

» Neural net models get 91-93 F1, 95 F1 with other tricks
we’ll see later. Works well for other languages too!




