
State-of-the-art Parsing

State-of-the-art Parsers

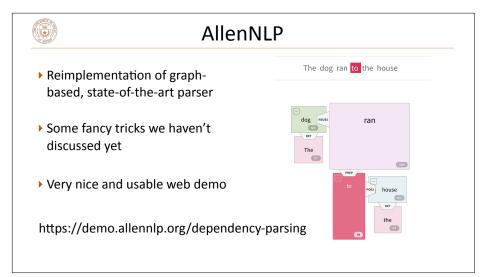
- ▶ Unlabeled attachment score: fraction of words with correct parent
- ▶ Labeled attachment score: have to label each edge correctly (but this isn't that hard noun before verb -> nsubj in most contexts)
- ▶ 2005: Eisner algorithm graph-based parser was SOTA (~91 UAS)
- ▶ 2010: Better graph-based parsers using "parent annotation" (~93 UAS)
- ▶ 2012: Transition-based Maltparser achieved good results (~90 UAS)
- ▶ 2014: Stanford neural dependency parser (Chen and Manning) got 92 UAS with transition-based neural model
- ▶ 2016: Improvements to Chen and Manning

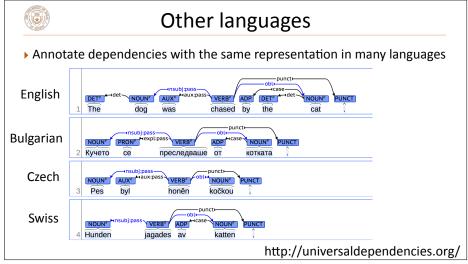
Stanford Dependency Parser

Domony	Dev		Test		Speed	
Parser	UAS	LAS	UAS	LAS	(sent/s)	
standard	90.2	87.8	89.4	87.3	26	
eager	89.8	87.4	89.6	87.4	34	
Malt:sp	89.8	87.2	89.3	86.9	469	
Malt:eager	89.6	86.9	89.4	86.8	448	
MSTParser	91.4	88.1	90.7	87.6	10	
Our parser	92.0	89.7	91.8	89.6	654	

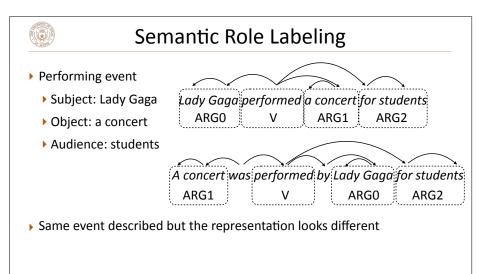
▶ MSTParser: "graph-based" parser (like CKY) from 2005 — so Chen+Manning's parser isn't much better but is much faster!

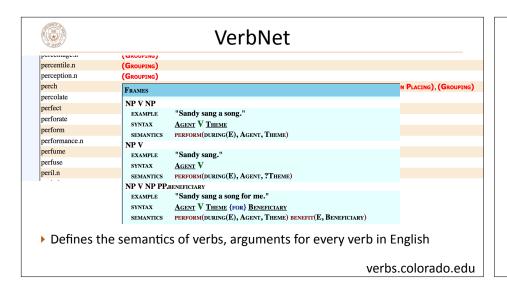
Chen and Manning (2014)

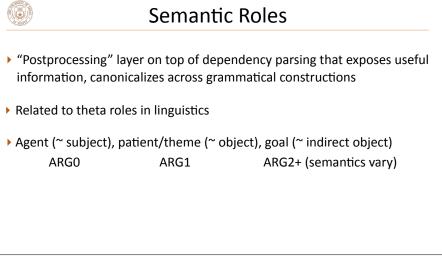


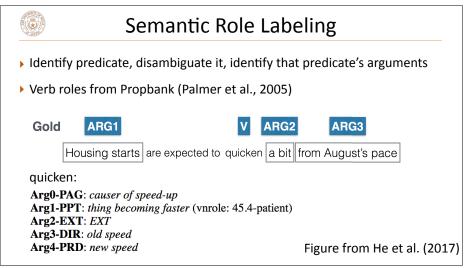

Parsey McParseFace (a.k.a. SyntaxNet)

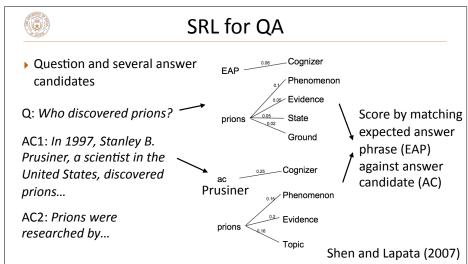
- ▶ Close to state-of-the-art, released by Google publicly
- > 94.61 UAS on the Penn Treebank using a transition-based system
- ▶ Additional data harvested via "tri-training", form of self-training
- > Same feature set as Chen and Manning (2014), Google fine-tuned it


https://github.com/tensorflow/models/tree/master/research/syntaxnet


Andor et al. (2016)






Semantic Role Labeling

More on SRL

- ▶ Even complex neural network models for SRL benefit from dependency information
- ► Emma Strubell from UMass Amherst: "Neural Network Architectures for Fast and Robust NLP"
 - ▶ Tuesday, 11am GDC main auditorium
- ▶ Includes discussion of work on neural SRL system

Relation Extraction

Relation Extraction

Tim Cook is the CEO of Apple.

Apple CEO Tim Cook said that...

Apple shares have taken a beating, much to the chagrin of its CEO, Tim Cook

Cook's tenure as CEO of Apple ...

Wozniak's desire to be CEO ...

Relation Extraction

Extract entity-relation-entity triples from a fixed inventory
Located In

Nationality

During the war in **Iraq**, American journalists were sometimes caught in the line of fire

- Use NER-like system to identify entity spans, classify relations between entity pairs with a classifier
- Systems can be feature-based or neural, look at surface words, dependency path features, semantic roles
- ▶ Problem: limited data for scaling to big ontologies

ACE (2003-2005)

Distant Supervision

- Lots of relations in our knowledge base already (e.g., 23,000 film-director relations); use these to bootstrap more training data
- If two entities in a relation appear in the same sentence, assume the sentence expresses the relation

Director

[Steven Spielberg]'s film [Saving Private Ryan] is loosely based on the brothers' story

Allison co-produced the Academy Award-winning [Saving Private Ryan], directed by [Steven Spielberg]

Director

Mintz et al. (2009)

Distant Supervision

- ▶ Learn decently accurate classifiers for ~100 Freebase relations
- Could be used to crawl the web and expand our knowledge base

Relation name	100 instances			1000 instances		
Relation name	Syn	Lex	Both	Syn	Lex	Both
/film/director/film	0.49	0.43	0.44	0.49	0.41	0.46
/film/writer/film	0.70	0.60	0.65	0.71	0.61	0.69
/geography/river/basin_countries	0.65	0.64	0.67	0.73	0.71	0.64
/location/country/administrative_divisions	0.68	0.59	0.70	0.72	0.68	0.72
/location/location/contains	0.81	0.89	0.84	0.85	0.83	0.84
/location/us_county/county_seat	0.51	0.51	0.53	0.47	0.57	0.42
/music/artist/origin	0.64	0.66	0.71	0.61	0.63	0.60
/people/deceased_person/place_of_death	0.80	0.79	0.81	0.80	0.81	0.78
/people/person/nationality	0.61	0.70	0.72	0.56	0.61	0.63
/people/person/place_of_birth	0.78	0.77	0.78	0.88	0.85	0.91
Average	0.67	0.66	0.69	0.68	0.67	0.67

Mintz et al. (2009)

Open IE

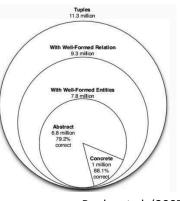
Open Information Extraction

- "Open"ness want to be able to extract all kinds of information from open-domain text
- Acquire commonsense knowledge just from "reading" about it, but need to process lots of text ("machine reading")
- Typically no fixed relation inventory

TextRunner

- Extract positive examples of (e, r, e) triples via parsing and heuristics
- ▶ Train a Naive Bayes classifier to filter triples from raw text: uses features on POS tags, lexical features, stopwords, etc.

Barack Obama, 44th president of the United States, was born on August 4, 1961 in Honolulu


- => Barack_Obama, was born in, Honolulu
- ▶ 80x faster than running a parser (which was slow in 2007...)
- ▶ Use multiple instances of extractions to assign probability to a relation

Banko et al. (2007)

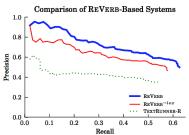
Exploiting Redundancy

- ▶ 9M web pages / 133M sentences
- ▶ 2.2 tuples extracted per sentence, filter based on probabilities
- Concrete: definitely trueAbstract: possibly true but underspecified
- Hard to evaluate: can assess precision of extracted facts, but how do we know recall?

Banko et al. (2007)

ReVerb

- More constraints: open relations have to begin with verb, end with preposition, be contiguous (e.g., was born on)
- Extract more meaningful relations, particularly with light verbs


is	is an album by, is the author of, is a city in
has	has a population of, has a Ph.D. in, has a cameo in
made	made a deal with, made a promise to
took	took place in, took control over, took advantage of
gave	gave birth to, gave a talk at, gave new meaning to
got	got tickets to, got a deal on, got funding from

Fader et al. (2011)

ReVerb

- ▶ For each verb, identify the longest sequence of words following the verb that satisfy a POS regex (V .* P) and which satisfy heuristic lexical constraints on specificity
- Find the nearest arguments on either side of the relation
- Annotators labeled relations in 500 documents to assess recall

Fader et al. (2011)

QA from Open IE

Former	municipalities	in	Brandenburgh	
	N	N N/NP	NP	
$\lambda f \lambda x. f(x) \wedge former(x)$	$\lambda x.municipalities(x)$	$\lambda f \lambda x \lambda y \dot{f}(y) \wedge in(y,x)$	Brandenburg	
>		\longrightarrow $N \setminus N$		
$\lambda x.former(x) \land municipalities(x)$ $\lambda f \lambda y.f(y) \land in(y, Branden)$		andenburg)		
(b) Constant mat	ches replace underspecifie	ed constants with Freebase co	oncepts	
(b) Constant mat	ches replace underspecifie	ed constants with Freebase co	oncepts	
$0 = \lambda x.former(x) \land municipal muni$	$icipalities(x) \land in(x, Br$	randenburg)		
$\lambda_1 = \lambda x. former(x) \land municipal m$	$icipalities(x) \wedge in(x, \mathtt{Br}$	andenburg)		
$_{2}=\lambda x.former(x) \land muni$	$icipalities(x) \land \texttt{location}$	on.containedby (x,\mathtt{Brande})	nburg)	
$I_3 = \lambda x. former(x) \wedge \mathtt{Open}$	$\mathtt{Rel}(x, \mathtt{Municipality}) \land $	location.containedby(a	, Brandenburg)	
	-D-3(M13:+)	∧ location.containedby	(P 11)	

Choi et al. (2015)

Takeaways

- ▶ SRL/AMR: handle a bunch of phenomena, but more or less like syntax++ in terms of what they represent
- ▶ Relation extraction: can collect data with distant supervision, use this to expand knowledge bases
- Open IE: extracts lots of things, but hard to know how good or useful they are
 - ▶ Can combine with standard question answering
 - ▶ Add new facts to knowledge bases
- Many, many applications and techniques

Roadmap

Roadmap

- Classification: conventional and neural, word representations (3 weeks)
 - Linear and neural classification
 - How to build effective word vectors
- ▶ Text analysis: tagging, parsing, information extraction (3.5 weeks)
 - Structured models for sequences, trees (HMMs, PCFGs), as well as unstructured approaches (transition-based parsing)
 - ▶ Lots of NLP tasks can be formulated as tagging

Applications of Tagging

• Extract product occurrences in cybercrime forums, but not everything that looks like a product is a product

TITLE: [buy] Backconnect bot

BODY: Looking for a solid backconnect bot.

If you know of anyone who codes them please let me know

(a) File 0-initiator4856

TITLE: Exploit cleaning?

BODY: Have some Exploits i need fud.

(b) File 0-initiator10815

Not a product in this context

Portnoff et al. (2017), Durrett et al. (2017)

Roadmap

- Classification: conventional and neural, word representations (3 weeks)
 - Linear and neural classification
 - How to build effective word vectors
- ▶ Text analysis: tagging, parsing, information extraction (3.5 weeks)
 - Structured models for sequences, trees (HMMs, PCFGs), as well as unstructured approaches (transition-based parsing)
 - Missing: structured neural models. These are a bit beyond this class but we'll see one way to do this after spring break
- ▶ Generation, applications: language modeling, machine translation, dialogue (4 weeks)
- ▶ Other applications: question answering, TBD (3 weeks)