
Using	RNNs

What	do	RNNs	produce?

‣ Encoding	of	each	word	—	can	pass	this	to	another	layer	to	make	a	
predic=on	(can	also	pool	these	to	get	a	different	sentence	encoding)

=

‣ Encoding	of	the	sentence	—	can	pass	this	a	decoder	or	make	a	
classifica=on	decision	about	the	sentence

the		movie		was			great

‣ RNN	can	be	viewed	as	a	transforma=on	of	a	sequence	of	vectors	into	a	
sequence	of	context-dependent	vectors

RNN	Uses
‣ Transducer:	make	some	predic=on	for	each	element	in	a	sequence

‣ Acceptor/encoder:	encode	a	sequence	into	a	fixed-sized	vector	and	use	
that	for	some	purpose

the		movie		was			great

predict	sen=ment	(matmul	+	soNmax)

translate

the		movie		was			great

DT						NN				VBD					JJ

paraphrase/compress

output	y	=	score	for	each	tag,	then	soNmax

Mul=layer	Bidirec=onal	RNN

‣ Sentence	classifica=on	
based	on	concatena=on	
of	both	final	outputs

‣ Token	classifica=on	based	on	
concatena=on	of	both	direc=ons’	
token	representa=ons

the		movie		was			great the		movie		was			great



Training	RNNs

the		movie		was			great

‣ Loss	=	nega=ve	log	likelihood	of	probability	of	gold	label	(or	use	SVM	
or	other	loss)

P (y|x)

‣ Backpropagate	through	en=re	network
‣ Example:	sen=ment	analysis

Training	RNNs

the		movie		was			great

‣ Loss	=	nega=ve	log	likelihood	of	probability	of	gold	predic=ons,	
summed	over	the	tags

‣ Loss	terms	filter	back	through	network

P (ti|x)

‣ Example:	language	modeling	(predict	next	word	given	context)

RNN	Language	Modeling

RNN	Language	Modeling

I							saw				the				dog

hi
P (w|context) = exp(w · hi)P

w0 exp(w0 · hi)

P (w|context) = softmax(Whi)

‣ W	is	a	(vocab	size)	x	(hidden	size)	matrix;	linear	layer	in	PyTorch	(rows	
are	word	embeddings)

equivalent	to

word	probs

=



Training	RNNLMs

<s>							I							saw				the				dog

‣ Input	is	a	sequence	of	words,	output	is	those	words	shiNed	by	one,

I							saw				the				dog		running

‣ Allows	us	to	efficiently	batch	up	training	across	=me	(one	run	of	the	RNN)

Training	RNNLMs

I							saw				the				dog

‣ Total	loss	=	sum	of	nega=ve	log	likelihoods	at	each	posi=on

‣ In	PyTorch:	simply	add	the	losses	together	and	call	.backward()

P(w|context)

loss	=	—	log	P(w*|context)

Batched	LM	Training
I	saw	the	dog	running	in	the	park	and	it	looked	very	excited	to	be	there

<s>							I							saw				the				dog

I							saw				the				dog		running

<s>						in						the				park			and

in						the				park			and					it
batch	dim

‣ Why	not	one	long	chain?

looked	very	excited	to	be

Batched	LM	Training
‣ torch.nn.LSTM	/	torch.nn.GRU:	expect	input	in	[seq	len,	batch,	word	dim]	
format

executed	in	parallel

‣ Cannot	parallelize	across	=mesteps	
of	RNN	since	output	depends	on	
previous	=mesteps

‣ Using	larger	batches	is	necessary	to	
achieve	maximum	parallelism

‣ Input:	[4,	2,	dim]	

I							saw				the				dog

in						the				park			and



Other	Implementa=on	Details
‣ torch.nn.Embedding:	maps	sequence	of	word	indices	to	vectors

‣ [126,	285]	->	[[0.1,	-0.07,	1.2],  
																									[-2.3,	0.2,	1.4]]

‣Moves	from	[sequence	length]	vector	of	indices	->	[seq	len,	dim]	tensor	
or	[batch,	sequence	length]	matrix	->	[batch,	seq	len,	dim	tensor]

LM	Evalua=on
‣ Accuracy	doesn’t	make	sense	—	predic=ng	the	next	word	is	generally	
impossible	so	accuracy	values	would	be	very	low

‣ Evaluate	LMs	on	the	likelihood	of	held-out	data	(averaged	to	
normalize	for	length)

1

n

nX

i=1

logP (wi|w1, . . . , wi�1)

‣ Perplexity:	exp(average	nega=ve	log	likelihood).	Lower	is	beoer

‣ Suppose	we	have	probs	1/4,	1/3,	1/4,	1/3	for	4	predic=ons

‣ Avg	NLL	(base	e)	=	1.242					Perplexity	=	3.464

Visualizing	LSTMs
‣ Train	character	LSTM	language	model	(predict	next	character	based	on	
history)	over	two	datasets:	War	and	Peace	and	Linux	kernel	source	code

Karpathy	et	al.	(2015)

‣ Visualize	ac=va=ons	of	specific	cells	(components	of	c)	to	understand	them

T									h								e									_

c

Plot	this	value	over	=mesteps,	
blue	is	smaller,	red	is	larger

Visualizing	LSTMs
‣ Train	character	LSTM	language	model	(predict	next	character	based	on	
history)	over	two	datasets:	War	and	Peace	and	Linux	kernel	source	code

Karpathy	et	al.	(2015)

‣ Counter:	know	when	to	generate	\n
‣ Visualize	ac=va=ons	of	specific	cells	(components	of	c)	to	understand	them



Visualizing	LSTMs

Karpathy	et	al.	(2015)

‣ Binary	switch:	tells	us	if	we’re	in	a	quote	or	not
‣ Visualize	ac=va=ons	of	specific	cells	to	see	what	they	track

‣ Train	character	LSTM	language	model	(predict	next	character	based	on	
history)	over	two	datasets:	War	and	Peace	and	Linux	kernel	source	code

Visualizing	LSTMs

Karpathy	et	al.	(2015)

‣ Stack:	ac=va=on	based	on	indenta=on
‣ Visualize	ac=va=ons	of	specific	cells	to	see	what	they	track

‣ Train	character	LSTM	language	model	(predict	next	character	based	on	
history)	over	two	datasets:	War	and	Peace	and	Linux	kernel	source	code

Visualizing	LSTMs

Karpathy	et	al.	(2015)

‣Uninterpretable:	probably	doing	double-duty,	or	only	makes	sense	in	the	
context	of	another	ac=va=on

‣ Visualize	ac=va=ons	of	specific	cells	to	see	what	they	track

‣ Train	character	LSTM	language	model	(predict	next	character	based	on	
history)	over	two	datasets:	War	and	Peace	and	Linux	kernel	source	code

State-of-the-art	LMs

Melis	et	al.	(2017)

‣Good	LSTM	LMs	have	~27M	params,	4-5	layers

‣ Beoer	language	models	using	transformers	(will	discuss	aNer	MT)

‣ Kneser-Ney	5-gram	model	with	cache:	PPL	=	125.7

‣ LSTM:	PPL	~	60-80	(depending	on	how	much	you	op=mize	it)

‣ LSTM	character-level:	PPL	~1.5	(205	character	vocab)


