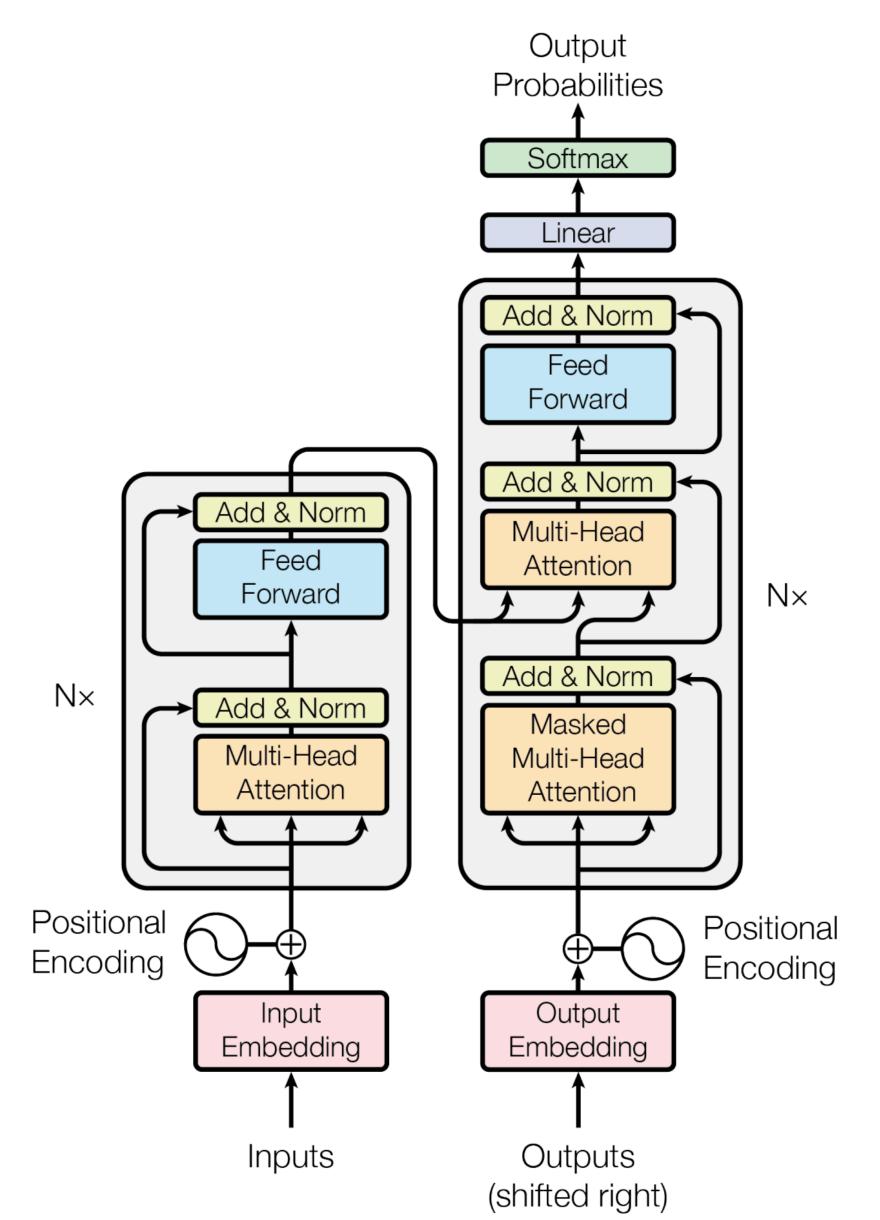
Transformers for MT

Transformers



- Encoder and decoder are both transformers
- Decoder consumes the previous generated token (and attends to input), but has no recurrent state

Vaswani et al. (2017)

Transformers

- If we let self attention look at the whole sentence, can access anything in O(1)
- Quadratic in sentence length

Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations for different layer types. n is the sequence length, d is the representation dimension, k is the kernel size of convolutions and r the size of the neighborhood in restricted self-attention.

Layer Type	Complexity per Layer	Sequential	Maximum Path Length
		Operations	
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)
Convolutional	$O(k \cdot n \cdot d^2)$	O(1)	$O(log_k(n))$
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)	O(n/r)

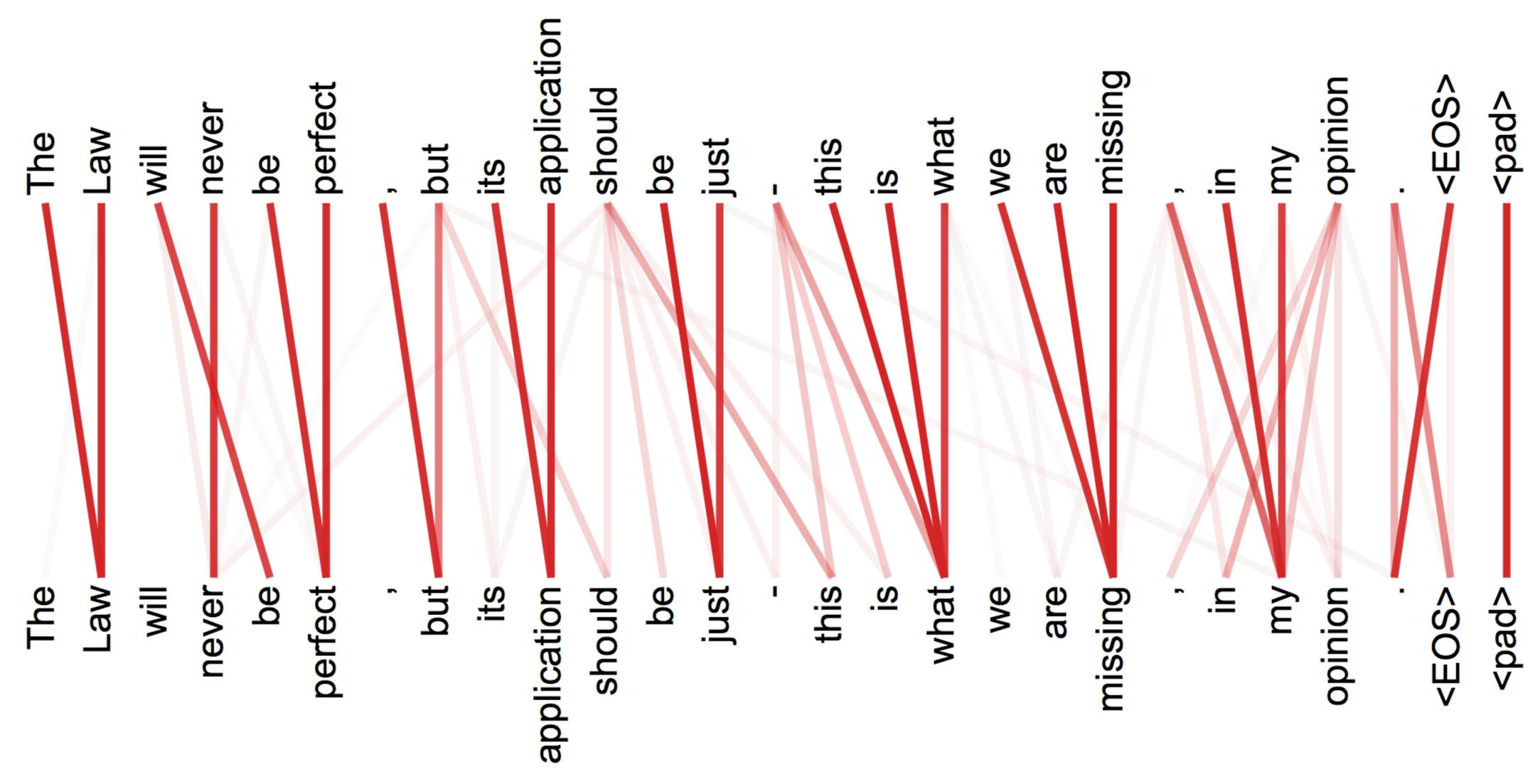
Transformers

Madal	BLEU			
Model	EN-DE	EN-FR		
ByteNet [18]	23.75			
Deep-Att + PosUnk [39]		39.2		
$\overline{GNMT} + RL [38]$	24.6	39.92		
ConvS2S [9]	25.16	40.46		
MoE [32]	26.03	40.56		
Deep-Att + PosUnk Ensemble [39]		40.4		
GNMT + RL Ensemble [38]	26.30	41.16		
ConvS2S Ensemble [9]	26.36	41.29		
Transformer (base model)	27.3	38.1		
Transformer (big)	28.4	41.8		

Big = 6 layers, 1000 dim for each token, 16 heads,
base = 6 layers + other params halved

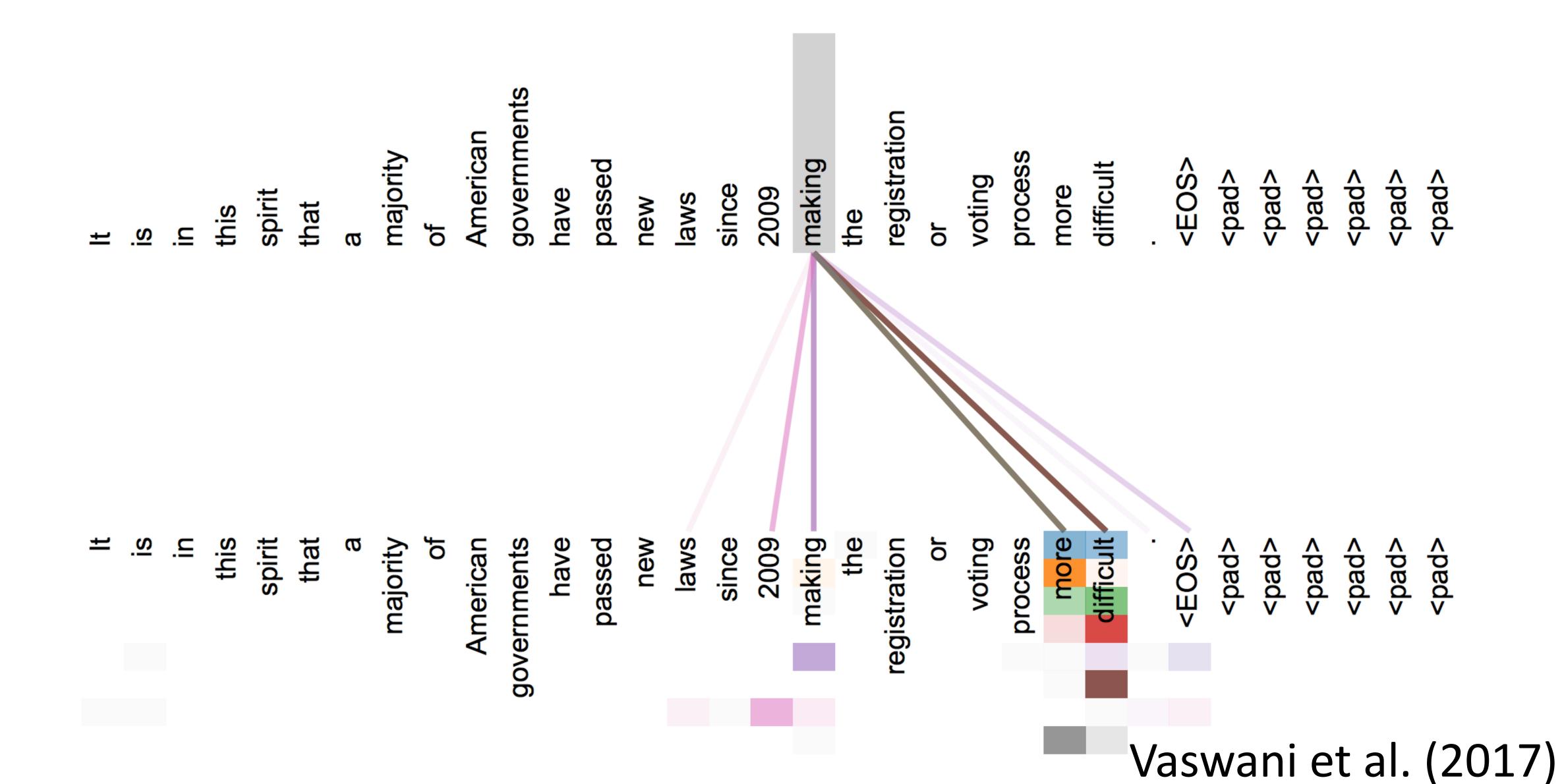
Vaswani et al. (2017)

Visualization: low layer (one head)



Vaswani et al. (2017)

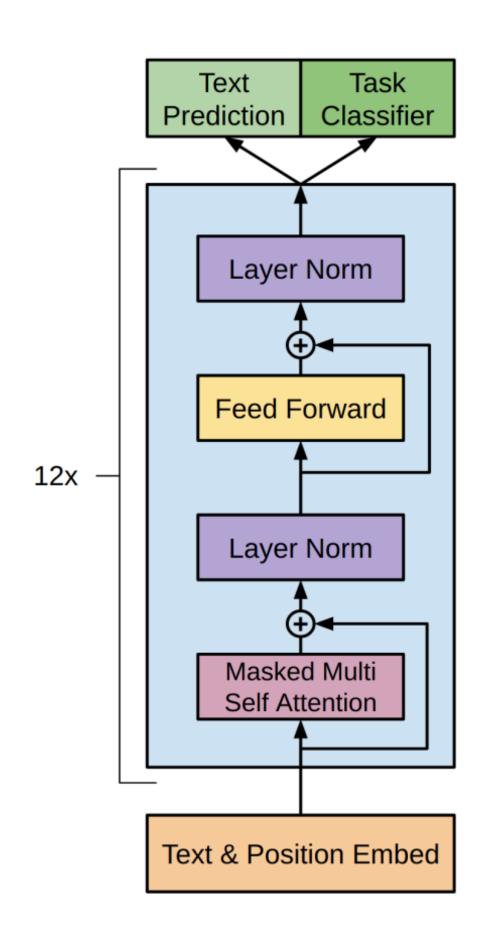
Visualization: high layer (several heads)



GPT/BERT

OpenAl GPT

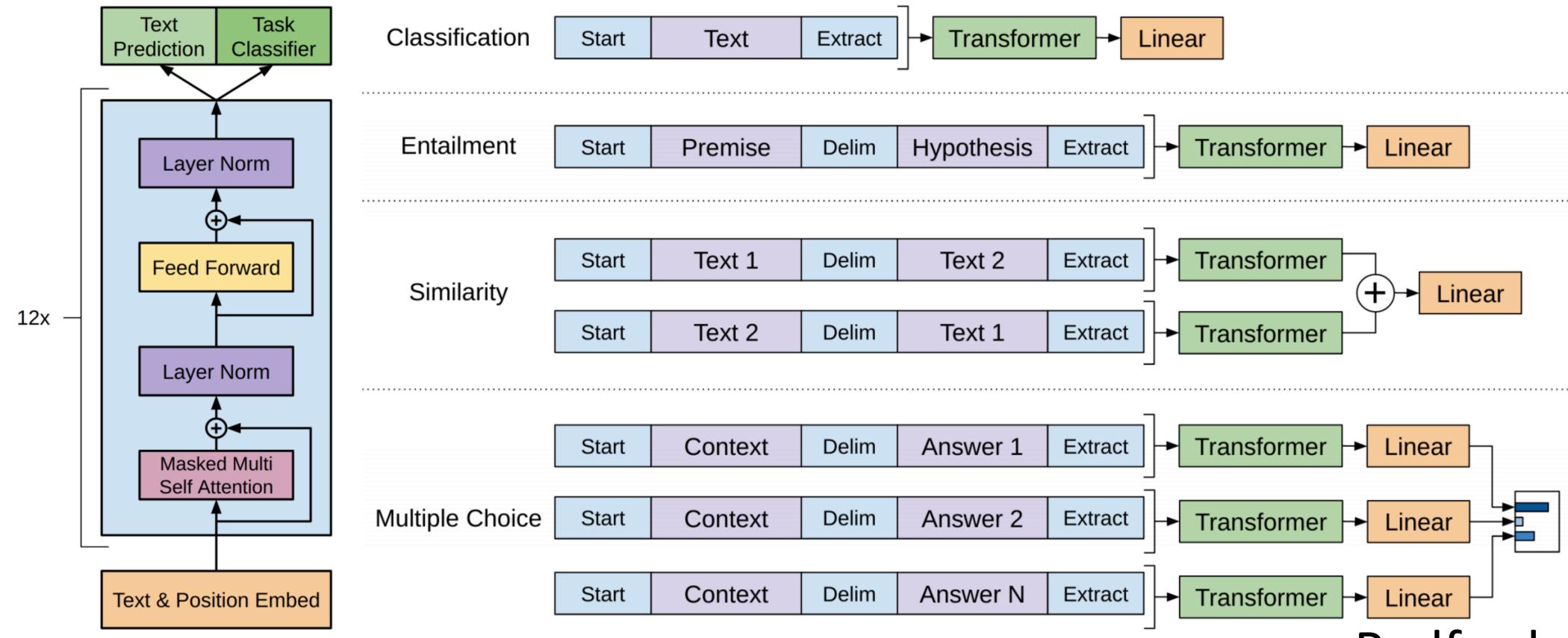
- "ELMo with transformers"
- Fine-tune transformer parameters on the end task



Assignment 4 architecture but with a pretrained transformer model

OpenAl GPT

- "ELMo with transformers"
- Fine-tune transformer parameters on the end task



Radford et al. (2018)

OpenAl GPT

Method	Classification		Seman	GLUE		
	CoLA (mc)	SST2 (acc)	MRPC (F1)	STSB (pc)	QQP (F1)	
Sparse byte mLSTM [16]	_	93.2	_	_	_	_
TF-KLD [23]	_	_	86.0	_	_	_
ECNU (mixed ensemble) [60]	_	_	_	81.0	_	_
Single-task BiLSTM + ELMo + Attn [64] Multi-task BiLSTM + ELMo + Attn [64]	35.0 18.9	90.2 91.6	80.2 83.5	55.5 72.8	<u>66.1</u> 63.3	64.8 68.9
Finetuned Transformer LM (ours)	45.4	91.3	82.3	82.0	70.3	72.8

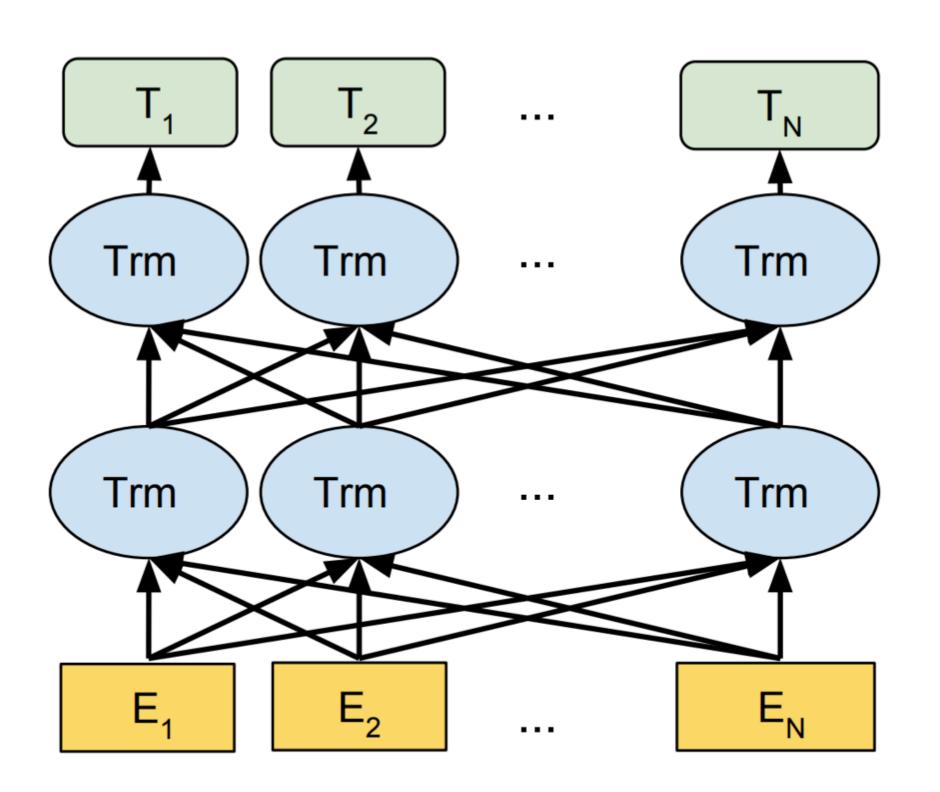
Better than ELMo

► Two-sided Transformer model

Big model: 24 layers, word dims of 1024, 16 heads

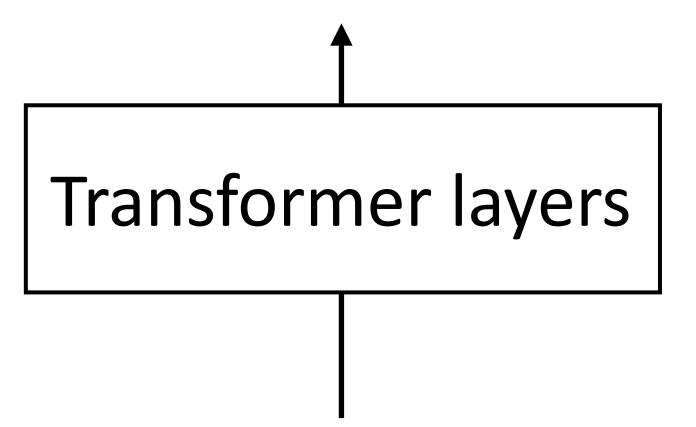
Small model: 3/4 of this

Problem: how to do LM when you look at the whole input? Predicting T's from E's is trivial



► Text "infilling" task

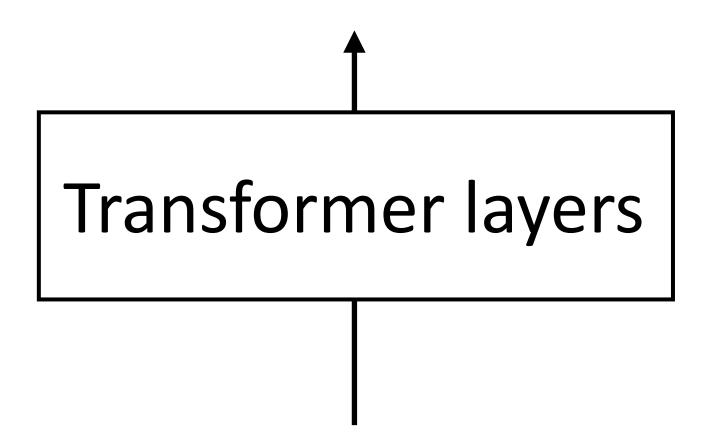
I went to the store and bought some milk



I went to the [MASK] and bought [MASK] [MASK]

 Next sentence prediction: predict a true/false label from a [CLS] (classification) input

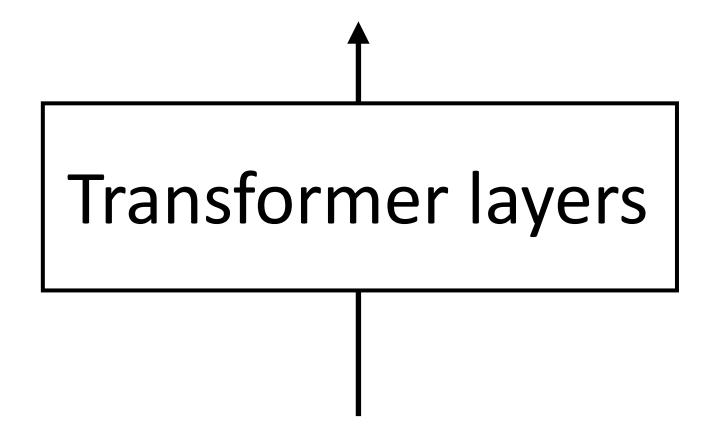
TRUE I went to the store and bought some milk | It was tasty.



[CLS] I went to the [MASK] and bought [MASK] [MASK] || [MASK] was tasty.

 Next sentence prediction: predict a true/false label from a [CLS] (classification) input

FALSE I went to the store and bought some milk | I flew to Paris

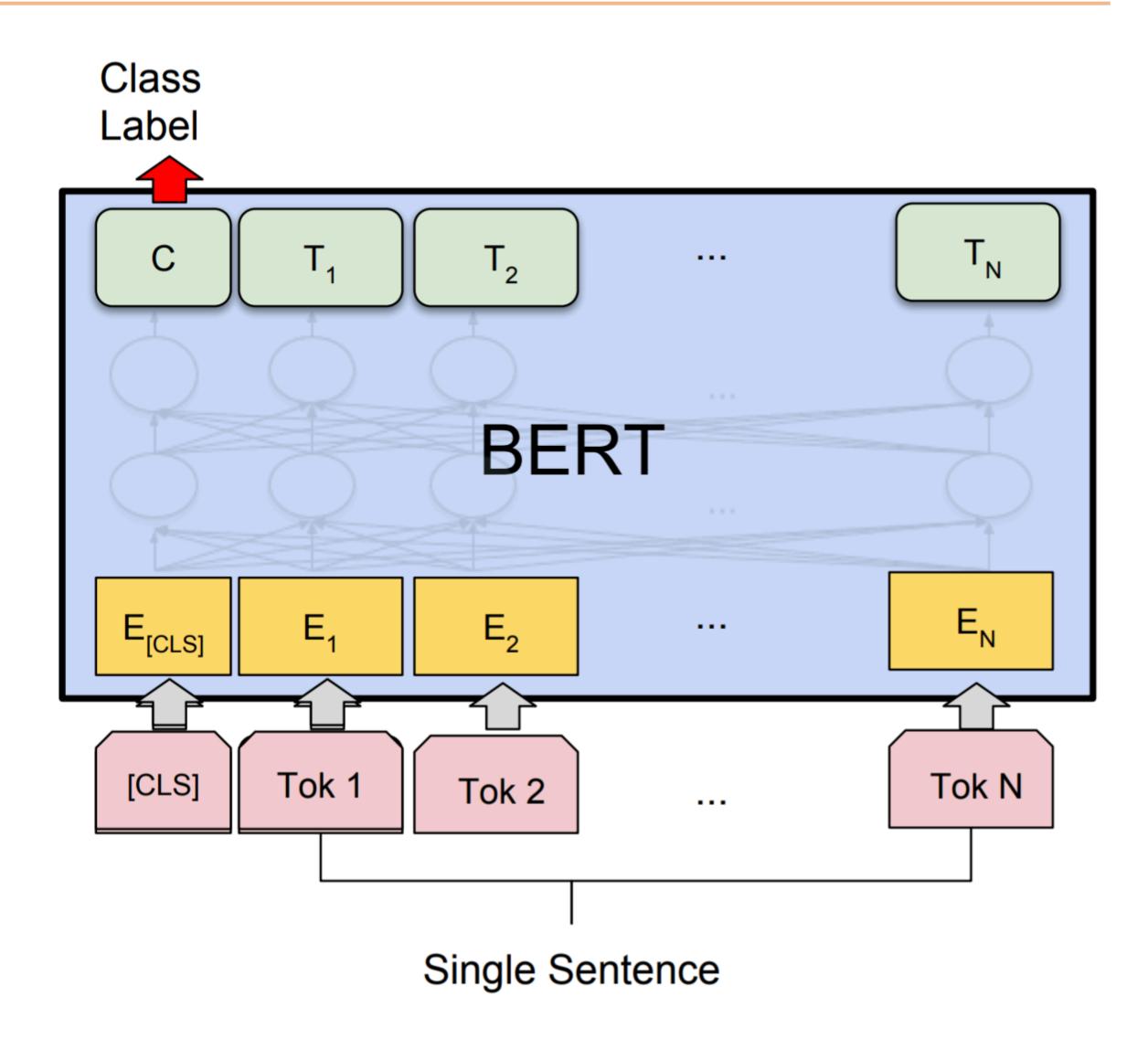


[CLS] I went to the [MASK] and bought [MASK] [MASK] || [MASK] flew to Paris

Can use this like ELMo and just produce embeddings

Again, works better to fine-tune the whole model on the end task

"Rewires" the class label output to do the right thing



System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	_
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.9	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	88.1	91.3	45.4	80.0	82.3	56.0	75.2
BERT _{BASE}	84.6/83.4	71.2	90.1	93.5	52.1	85.8	88.9	66.4	79.6
BERT _{LARGE}	86.7/85.9	72.1	91.1	94.9	60.5	86.5	89.3	70.1	81.9

- Huge improvements over prior work (even compared to ELMo)
- Effective at "sentence pair" tasks: textual entailment (does sentence A imply sentence B), paraphrase detection

Open Al GPT2

- ► GPT2: even bigger GPT
- Trained on 40GB of text collected from upvoted links from reddit
- ▶ 1.5B parameters by far the largest of these models trained to date

Parameters	Layers	d_{model}
117M	12	768
345M	24	1024
762M	36	1280
1542M	48	1600

Open Al GPT2

SYSTEM PROMPT (HUMAN-WRITTEN)

Miley Cyrus was caught shoplifting from Abercrombie and Fitch on Hollywood Boulevard today.

MODEL COMPLETION (MACHINE-WRITTEN, SECOND TRY) The 19-year-old singer was caught on camera being escorted out of the store by security guards.

The singer was wearing a black hoodie with the label 'Blurred Lines' on the front and 'Fashion Police' on the back.

Scroll down for video

Shoplifting: Miley Cyrus was caught shoplifting from Abercrombie and Fitch on Hollywood Boulevard today (pictured)

The singer was wearing a black hoodie with the label 'Blurred Lines' on the front and 'Fashion Police' on the back

The singer was also wearing a pair of black-rimmed glasses, a black jacket, black jeans and black sandals.

She was carrying a pair of black and white striped gloves and a small black bag.

slide credit: OpenAl