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What states border Texas
(S/(S\NP))/N N (S\NP)/NP NP
Mg Az f(x) Ag(x) Mz.state(x) Ax.Ay.borders(y,z) texas
(S\WP)

Ay.borders(y, texas)

» “What” is a very complex type: needs a noun and needs a S\NP to
form a sentence. S\NP is basically a verb phrase (border Texas)

Zettlemoyer and Collins (2005)

CCG Parsing

What states border Texas

(S/(S\NP))/N N (S\NP)/NP NP

AfAg Az f(x) Ag(x) Mz.state(z) Ax.Ay.borders(y,z) texas
S/(S\NP) 7 (S\NP)

Ag.\z.state(z) A g(x) Ay.borders(y, texas)

Ax.state(x) A borders(z, texas)
» “What” is a very complex type: needs a noun and needs a S\NP to
form a sentence. S\NP is basically a verb phrase (border Texas)
» What in this case knows that there are two predicates (states and
border Texas). This is not a general thing Zettlemoyer and Collins (2005)

CCG Parsing

» These question are compositional: we can build bigger ones out of
smaller pieces

What states border Texas?
What states border states bordering Texas?
What states border states bordering states bordering Texas?

» In general, answering this does require parsing and not just slot-filling




CCG Parsing

Show me flights to Prague
S/N N (N\N) /NP NP
Af. £ Ax.flight(x) Ay.Af.Ax.f(y)Ato(x,y) PRG

N\N
Af.Ax. £ (x)Ato(x,PRG)

N
Ax.flight (x) Ato(x, PRG)

S
Ax.flight (x) Ato(x,PRG)

» “to” needs an NP (destination) and N (parent)

» “Show me” s a no-op Slide credit: Dan Klein

CCG Parsing

» Many ways to build these parsers

» One approach: run a “supertagger” (tags the sentence with complex
labels), then run the parser

What states border Texas

(S/(S\NP))/N N (S\NP)/NP NP
A AgAz.f(z) A g(z) Az.state(z) Az.Ay.borders(y,z) texas

» Parsing is easy once you have the tags, so we’ve reduced it to a (hard)
tagging problem

Zettlemoyer and Collins (2005)

Training CCG Parsers

» Training data looks like pairs of sentences and logical forms

What states border Texas Ax. state(x) A borders(x, e89)

What borders Texas Ax. borders(x, e89)

» What can we learn from these?
» Problem: we don’t know the derivation
» Texas corresponds to NP | €89 in the logical form (easy to figure out)

» What corresponds to (S/(S\NP))/N | Af . Ag.Ax. f£(x) A g(x)

» How do we infer that without being told it?

Lexicon

» GENLEX: takes sentence S and logical form L. Break up logical form
into chunks C(L), assume any substring of S might map to any chunk
What states border Texas Ax. state(x) A borders(x, e89)

» Chunks inferred from the logic form based on rules:
» NP: e89 » (S\NP)/NP: Ax. Ay. borders(x,y)

» Any substring can parse to any of these in the lexicon
» Texas -> NP: e89 is correct
» border Texas -> NP: e89

» What states border Texas -> NP: e89
Zettlemoyer and Collins (2005)




Learning

» Unsupervised learning of correspondences, like word alignment

» Iterative procedure: estimate “best” parses that derive each logical
form, retrain the parser using these parses with supervised learning

» Eventually we converge on the right parses at the same time that we
learn a model to build them

Zettlemoyer and Collins (2005)

Seq2seq Semantic Parsing

Semantic Parsing as Translation

“what states border Texas”

|
lambda x ( state ( x ) and border ( x , e89 ) ) )

» Write down a linearized form of the semantic parse, train seq2seq models
to directly translate into this representation

» What are some benefits of this approach compared to grammar-based?

» What might be some concerns about this approach? How do we mitigate

them?
Jia and Liang (2016)

Handling Invariances

“what states border Texas” “what states border Ohio”

» Parsing-based approaches handle these the same way

» Possible divergences: features, different weights in the lexicon
» Can we get seq2seq semantic parsers to handle these the same way?
» Key idea: don’t change the model, change the data

» “Data augmentation”: encode invariances by automatically generating
new training examples




Data Augmentation

ROOT — ( “what states border STATEID ?”,

Jia and Liang (2016)

answer (NV, (state(V0), next_to(V0, NV), const (V0, stateid(STATEID))) ))

STATEID — ( “texas”, texas )
STATEID — (“ohio”, ohio)

» Lets us synthesize a “what states border ohio ?” example

» Abstract out entities: now we can “remix” examples and encode
invariance to entity ID. More complicated remixes too

Semantic Parsing as Translation

GEO
x: “what is the population of iowa ?”
y: _answer ( NV , (
_population ( NV , V1 ) , _const (
V0 , _stateid ( iowa ) ) ) )
ATIS
x: “can you list all flights from chicago to milwaukee”
y: ( _lambda $0 e ( _and
( _flight $0 )
( _from $0 chicago : _ci )
( _to $0 milwaukee : _ci ) ) )
Overnight
x: “when is the weekly standup”
y: ( call listValue ( call
getProperty meeting.weekly_standup
( string start_time ) ) )

» Handle all of these with uniform machinery!

» Prolog

» Lambda calculus

» Other DSLs

Jia and Liang (2016)

Semantic Parsing as Translation

GEO | ATIS
Previous Work
Zettlemoyer and Collins (2007) 84.6
Kwiatkowski et al. (2010) 88.9
Liang et al. (2011)° 91.1
Kwiatkowski et al. (2011) 88.6 82.8
Poon (2013) 83.5
Zhao and Huang (2015) 88.9 84.2
Our Model
No Recombination 85.0 | 76.3
ABSENTITIES 85.4 79.9
ABSWHOLEPHRASES 87.5
CONCAT-2 84.6 | 79.0
CONCAT-3 77.5
AWP + AE 88.9
AE +C2 78.8
AWP + AE + C2 89.3
AE +C3 83.3

» Three forms of data

augmentation all help

» Results on these tasks are still not

as strong as hand-tuned systems
from 10 years ago, but the same
simple model can do well at all
problems

Jia and Liang (2016)

Applications

» ATIS: flight search

» GeoQuery (Zelle and Mooney, 1996): answering questions about
states (~80% accuracy)

» Jobs: answering questions about job postings (~80% accuracy)

» Can do well on all of these tasks if you handcraft systems and use
plenty of training data: these domains aren’t that rich




Regex Prediction

» Can use for other semantic parsing-like tasks

» Predict regex from text

Natural Language Encoder . N Q  <END>
he he he he 0 hd i hd 2 b pd 3
LsTM | 0| LstM |0 LstM | 2 stm | 3 | tstv | L0 stm!| L sTm! L2 LsTm
wof wih b |
lines ending in ‘Q’

Regular Expression Decoder

» Problem: requires a lot of data: 10,000 examples needed to get ~60%

accuracy on pretty simple regexes
Locascio et al. (2016)

SQL Generation

» Convert natural language
description into a SQL
query against some DB

» How to ensure that well-
formed SQL is generated?

» Three seq2seq models

» How to capture column
names + constants?

» Pointer mechanisms

Question:
[How many CFL teams are from York CoIIege?]

SQL:

SELECT COUNT CFL Team FROM
CFLDraft WHERE College = “York”

How many Seq2SQL SELECT

engine types did .

Val Musetti use? [Aggr_egatlon COUNT
classifier

Entrant SELECT column .

Constructor pointer RGN

Chassis

WHERE clause WHERE
pointer Driver =

decoder Val Musetti

Zhong et al. (2017)




