
CCG	Parsing

CCG	Parsing

Ze-lemoyer	and	Collins	(2005)

‣ “What”	is	a	very	complex	type:	needs	a	noun	and	needs	a	S\NP	to	
form	a	sentence.	S\NP	is	basically	a	verb	phrase	(border	Texas)

CCG	Parsing

Ze-lemoyer	and	Collins	(2005)

‣ “What”	is	a	very	complex	type:	needs	a	noun	and	needs	a	S\NP	to	
form	a	sentence.	S\NP	is	basically	a	verb	phrase	(border	Texas)

‣ What	in	this	case	knows	that	there	are	two	predicates	(states	and	
border	Texas).	This	is	not	a	general	thing

CCG	Parsing

‣ These	quesMon	are	composi2onal:	we	can	build	bigger	ones	out	of	
smaller	pieces

What	states	border	Texas?

What	states	border	states	bordering	Texas?

What	states	border	states	bordering	states	bordering	Texas?

‣ In	general,	answering	this	does	require	parsing	and	not	just	slot-filling

CCG	Parsing

Slide	credit:	Dan	Klein

‣ “to”	needs	an	NP	(desMnaMon)	and	N	(parent)
‣ “Show	me”	is	a	no-op

CCG	Parsing

Ze-lemoyer	and	Collins	(2005)

‣Many	ways	to	build	these	parsers

‣One	approach:	run	a	“supertagger”	(tags	the	sentence	with	complex	
labels),	then	run	the	parser

‣ Parsing	is	easy	once	you	have	the	tags,	so	we’ve	reduced	it	to	a	(hard)	
tagging	problem

Training	CCG	Parsers
‣ Training	data	looks	like	pairs	of	sentences	and	logical	forms

What	states	border	Texas λx. state(x) ∧ borders(x, e89)

What	borders	Texas λx. borders(x, e89)
…

‣What	can	we	learn	from	these?

‣ Texas	corresponds	to	NP	|	e89	in	the	logical	form	(easy	to	figure	out)

(S/(S\NP))/N	|	λf.λg.λx. f(x) ∧ g(x)‣ What	corresponds	to

‣ How	do	we	infer	that	without	being	told	it?

‣ Problem:	we	don’t	know	the	derivaMon

Lexicon

What	states	border	Texas λx. state(x) ∧ borders(x, e89)

‣ Any	substring	can	parse	to	any	of	these	in	the	lexicon

‣ Chunks	inferred	from	the	logic	form	based	on	rules:

‣ GENLEX:	takes	sentence	S	and	logical	form	L.	Break	up	logical	form	
into	chunks	C(L),	assume	any	substring	of	S	might	map	to	any	chunk

‣ Texas	->	NP:	e89	is	correct
‣ border	Texas	->	NP:	e89
‣ What	states	border	Texas	->	NP:	e89
… Ze-lemoyer	and	Collins	(2005)

‣ NP:	e89	 ‣ (S\NP)/NP:	λx.	λy. borders(x,y)

Learning

Ze-lemoyer	and	Collins	(2005)

‣ IteraMve	procedure:	esMmate	“best”	parses	that	derive	each	logical	
form,	retrain	the	parser	using	these	parses	with	supervised	learning

‣ Unsupervised	learning	of	correspondences,	like	word	alignment

‣ Eventually	we	converge	on	the	right	parses	at	the	same	Mme	that	we	
learn	a	model	to	build	them

Seq2seq	SemanMc	Parsing

SemanMc	Parsing	as	TranslaMon

Jia	and	Liang	(2016)

‣Write	down	a	linearized	form	of	the	semanMc	parse,	train	seq2seq	models	
to	directly	translate	into	this	representaMon

‣What	might	be	some	concerns	about	this	approach?	How	do	we	miMgate	
them?

“what	states	border	Texas”

lambda x (state (x) and border (x , e89)))

‣What	are	some	benefits	of	this	approach	compared	to	grammar-based?

Handling	Invariances

‣ Parsing-based	approaches	handle	these	the	same	way

‣ Possible	divergences:	features,	different	weights	in	the	lexicon

‣ Key	idea:	don’t	change	the	model,	change	the	data

“what	states	border	Texas” “what	states	border	Ohio”

‣ Can	we	get	seq2seq	semanMc	parsers	to	handle	these	the	same	way?

‣ “Data	augmentaMon”:	encode	invariances	by	automaMcally	generaMng	
new	training	examples

Data	AugmentaMon

‣ Abstract	out	enMMes:	now	we	can	“remix”	examples	and	encode	
invariance	to	enMty	ID.	More	complicated	remixes	too

‣ Lets	us	synthesize	a	“what	states	border	ohio	?”	example

Jia	and	Liang	(2016)

SemanMc	Parsing	as	TranslaMon

Jia	and	Liang	(2016)

‣ Prolog

‣ Lambda	calculus

‣Other	DSLs

‣ Handle	all	of	these	with	uniform	machinery!

SemanMc	Parsing	as	TranslaMon

Jia	and	Liang	(2016)

‣ Three	forms	of	data	
augmentaMon	all	help

‣ Results	on	these	tasks	are	sMll	not	
as	strong	as	hand-tuned	systems	
from	10	years	ago,	but	the	same	
simple	model	can	do	well	at	all	
problems

ApplicaMons
‣ GeoQuery	(Zelle	and	Mooney,	1996):	answering	quesMons	about	
states	(~80%	accuracy)

‣ Jobs:	answering	quesMons	about	job	posMngs	(~80%	accuracy)

‣ ATIS:	flight	search

‣ Can	do	well	on	all	of	these	tasks	if	you	handcraq	systems	and	use	
plenty	of	training	data:	these	domains	aren’t	that	rich

Regex	PredicMon
‣ Can	use	for	other	semanMc	parsing-like	tasks

‣ Predict	regex	from	text

‣ Problem:	requires	a	lot	of	data:	10,000	examples	needed	to	get	~60%	
accuracy	on	pre-y	simple	regexes

Locascio	et	al.	(2016)

SQL	GeneraMon
‣ Convert	natural	language	
descripMon	into	a	SQL	
query	against	some	DB

‣ How	to	ensure	that	well-
formed	SQL	is	generated?

Zhong	et	al.	(2017)

‣ Three	seq2seq	models

‣ How	to	capture	column	
names	+	constants?
‣ Pointer	mechanisms

