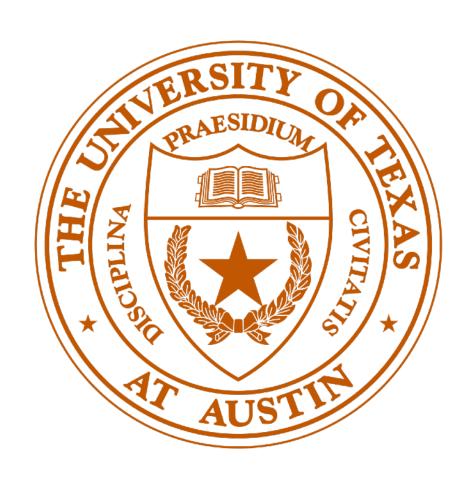
CS378: Natural Language Processing Lecture 6: NN Implementation



Greg Durrett

Announcements

► A1 due today at 5pm

► A2 out late tonight

Goldberg reading link fixed

Recall: Feedforward NNs

$$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$$

$$d \text{ hidden units}$$

$$v \quad d \text{ hidden units}$$

$$d \text{ x } n \text{ matrix}$$

$$d \text{ nonlinearity}$$

$$d \text{ x } n \text{ matrix}$$

$$d \text{ nonlinearity}$$

$$d \text{ nonlinearity}$$

$$d \text{ nonlinearity}$$

$$d \text{ nonlinearity}$$

$$d \text{ num_classes } \text{ x } d$$

$$d \text{ tanh, relu, ...}$$

$$d \text{ matrix}$$

Recall: Training Feedforward NNs

$$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$$

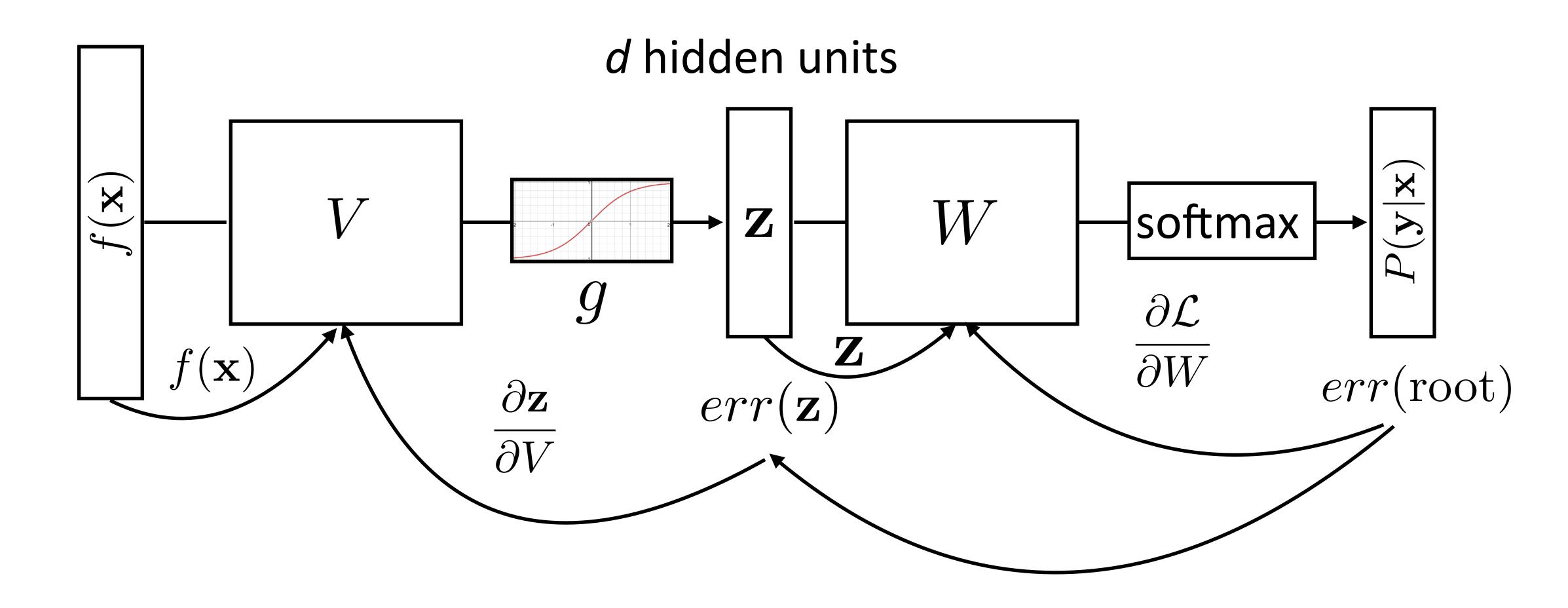
Maximize log likelihood of training data. For one point:

$$\mathcal{L}(\mathbf{x}, i^*) = \log P(y = i^* | \mathbf{x}) = \log (\operatorname{softmax}(W\mathbf{z}) \cdot e_{i^*})$$

▶ How to compute the gradient with respect to W and V?

Recall: Backpropagation

$$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$$



This Lecture

Neural net implementation / PyTorch 101

Neural net training

Word representations

Implementing Neural Networks: PyTorch 101

Computation Graphs

- Computing gradients is hard!
- Automatic differentiation: instrument code to keep track of derivatives

$$y = x * x$$
 \longrightarrow $(y,dy) = (x * x, 2 * x * dx)$ codegen

- Computation is now something we need to reason about symbolically
- Use a library like Pytorch or Tensorflow. This class: Pytorch
- ► Ensuing code examples are on the course website: ffnn_example.py under "Readings"

PyTorch

- Framework for defining computations that provides easy access to derivatives
- Module: defines a neural network (can use wrap other modules which implement predefined layers)
- If forward() uses crazy stuff, you have to write backward yourself

```
# Takes an example x and computes result
forward(x):
    ...
# Computes gradient after forward() is called
backward(): # produced automatically
    ...
```


Computation Graphs in Pytorch

Define forward pass for $P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$

```
class FFNN(nn.Module):
    def init (self, input size, hidden size, out size):
        super(FFNN, self). init__()
        self.V = nn.Linear(input size, hidden size)
        self.g = nn.Tanh() # or nn.ReLU(), sigmoid()...
        self.W = nn.Linear(hidden size, out size)
        self.softmax = nn.Softmax(dim=0)
    def forward(self, x):
        return self.softmax(self.W(self.g(self.V(x)))
               apply is syntactic sugar for forward
```


Input to Network

Whatever you define with torch.nn needs its input as some sort of tensor, whether it's integer word indices or real-valued vectors

```
def form_input(x) -> torch.Tensor:
    # Index words/embed words/etc.
    return torch.from_numpy(x).float()
```

More on this later

Training and Optimization

```
one-hot vector
P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))
                                     of the label
                                      (e.g., [0, 1, 0])
ffnn = FFNN(inp, hid, out)
optimizer = optim.Adam(ffnn.parameters(), lr=lr)
for epoch in range(0, num_epochs):
    for (input, gold label) in training data:
       ffnn.zero grad() # clear gradient variables
       probs = ffnn.forward(input)
       loss = torch.neg(torch.log(probs)).dot(gold label)
       loss.backward()
                               negative log-likelihood of correct answer
       optimizer.step()
```

Optimization in Pytorch

```
optimizer = optim.SGD(network.parameters(), lr=0.01)
optimizer = optim.Adam(network.parameters(), lr=0.001)
```

- Learning rates for deep learning are often tiny! (0.01 or lower)
- Adam: adaptive method, incorporates momentum (gradient is smoothed with running average of past gradients). We will discuss a bit more but it's outside the scope of this class.

Initialization in Pytorch

```
class FFNN(nn.Module):
    def __init__(self, inp, hid, out):
        super(FFNN, self).__init__()
        self.V = nn.Linear(inp, hid)
        self.g = nn.Tanh()
        self.W = nn.Linear(hid, out)
        self.softmax = nn.Softmax(dim=0)
        nn.init.uniform(self.V.weight)
```

Initializing to a nonzero value is critical, more in a bit

Training a Model

Define a computation graph

Initialize weights and optimizer

For each epoch:

For each batch of data:

Zero out gradient

Compute loss on batch

Autograd to compute gradients and take step

Decode test set

Batching in Neural Networks

Batching

- Batching data gives speedups due to more efficient matrix operations
- Need to make the computation graph process a batch at the same time

▶ Batch sizes from 1-100 often work well

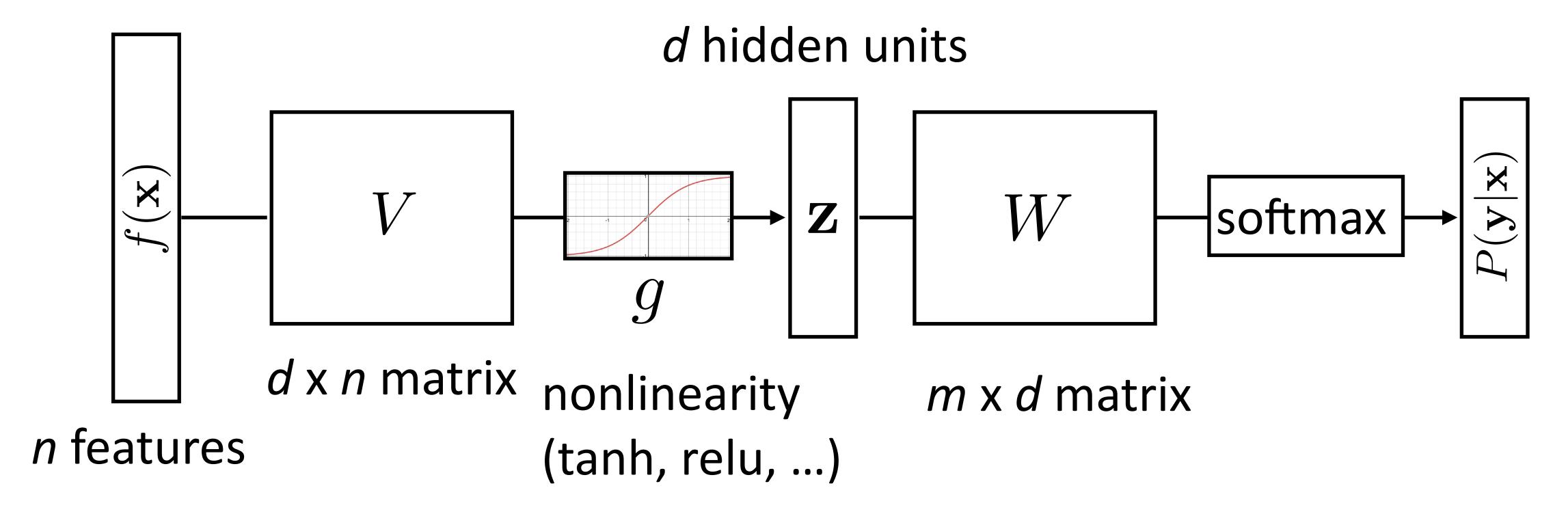
Optimization Redux

Nonconvex Optimization

- For logistic regression, there is a global optimum: sum of log probabilities is a convex function in the weights
- Neural networks are much harder to optimize!

How does initialization affect learning?

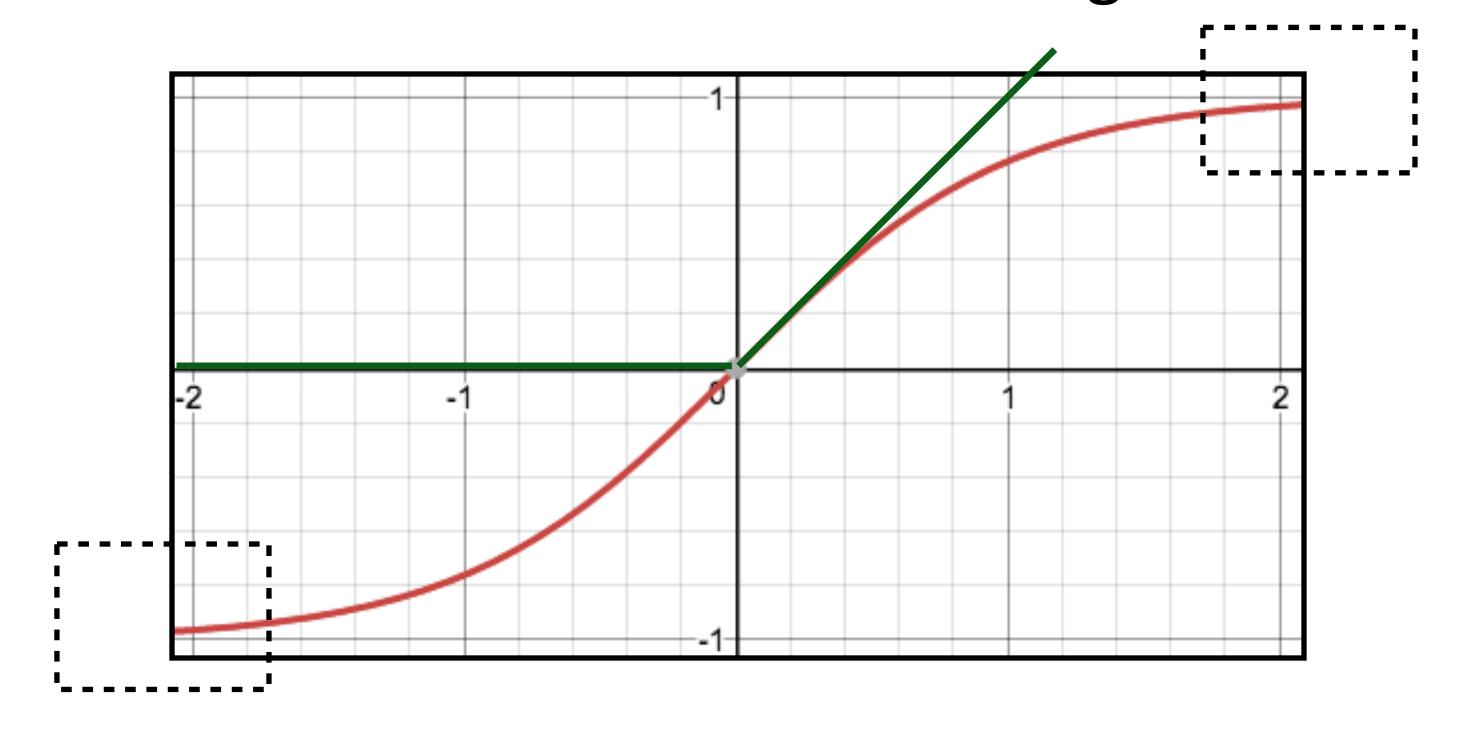
$$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$$



- ▶ How do we initialize V and W? What consequences does this have?
- Nonconvex problem, so initialization matters!

How does initialization affect learning?

Nonlinear model...how does this affect things?



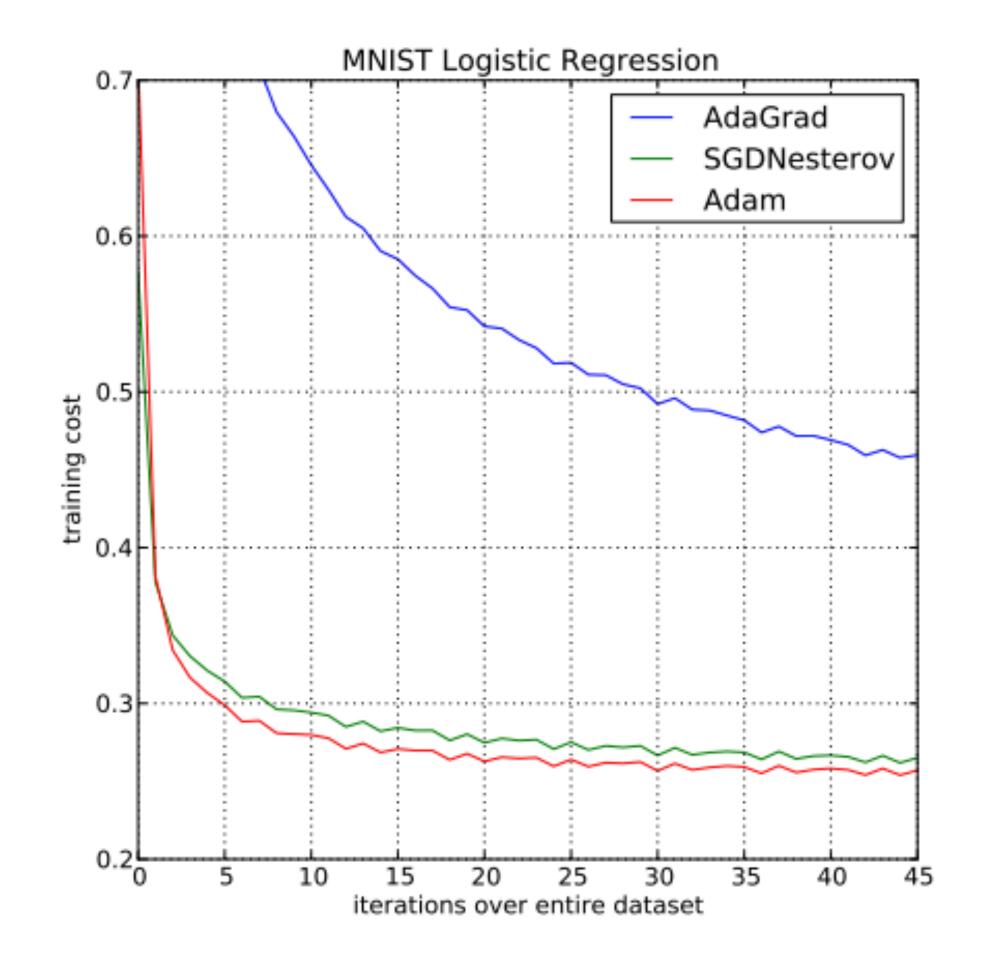
- If cell activations are too large in absolute value, gradients are small
- ▶ ReLU: larger dynamic range (all positive numbers), but can produce big values, can break down if everything is too negative

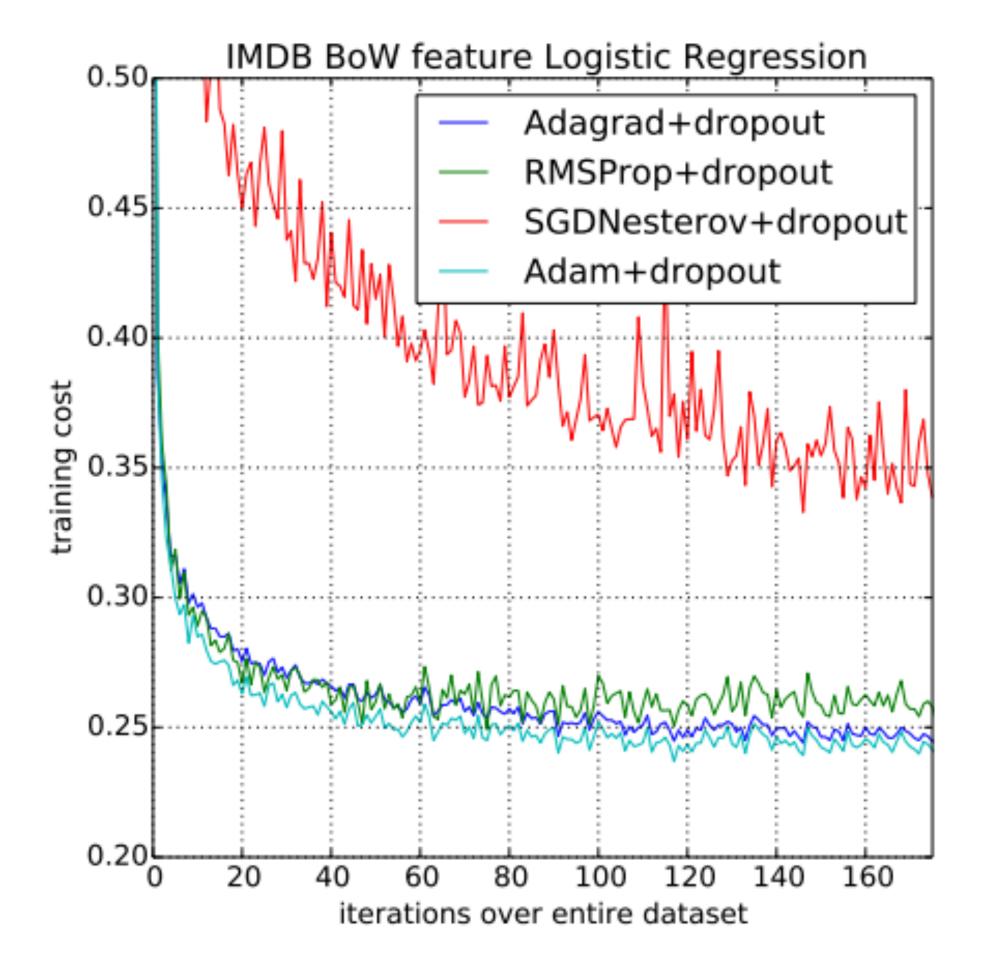
Initialization

- 1) Can't use zeroes for parameters to produce hidden layers: all values in that hidden layer are always 0 and have gradients of 0, never change
- 2) Initialize too large and cells are saturated
- ▶ Can do random uniform / normal initialization with appropriate scale
- Fancier initializers (Xavier Glorot initializer, Kaiming He) to match variances across layers

Optimizer

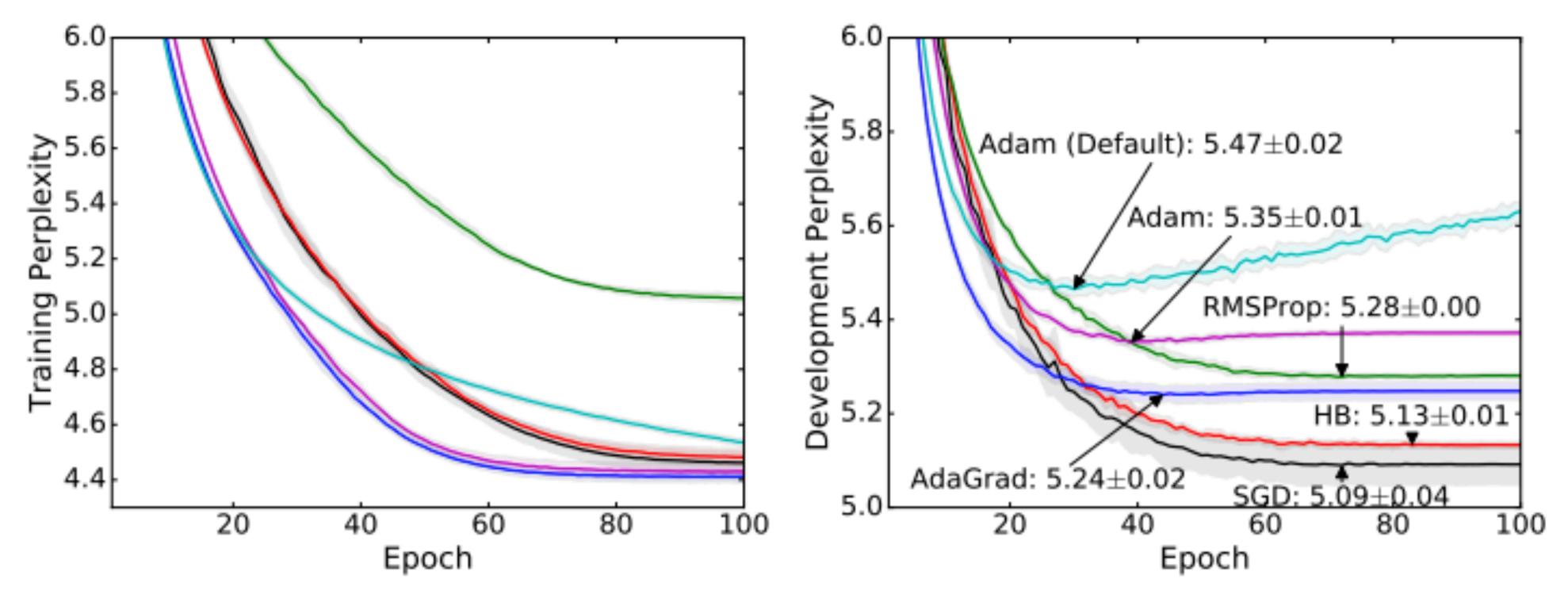
- Adam (Kingma and Ba, ICLR 2015) is very widely used
- Adaptive step size, incorporates momentum





Optimizer

- Wilson et al. NIPS 2017: adaptive methods can actually perform badly at test time (Adam is in pink, SGD in black)
- Check dev set periodically, decrease learning rate if not making progress

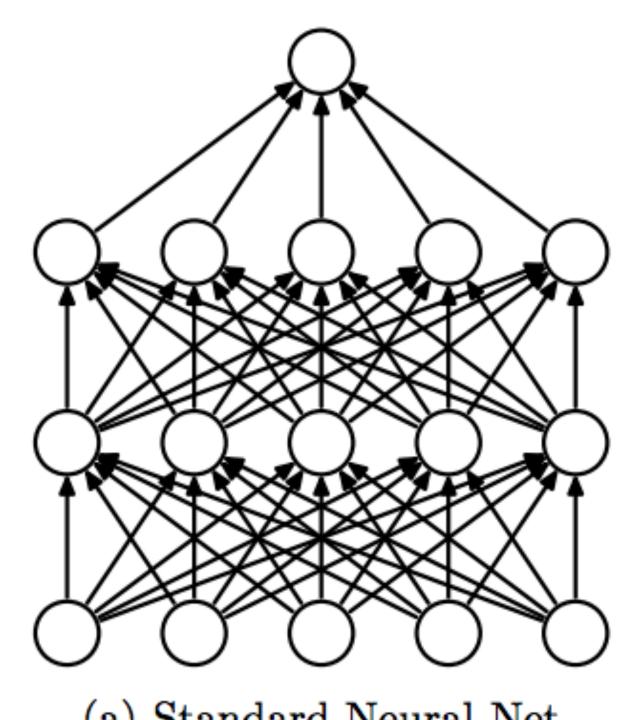


(e) Generative Parsing (Training Set)

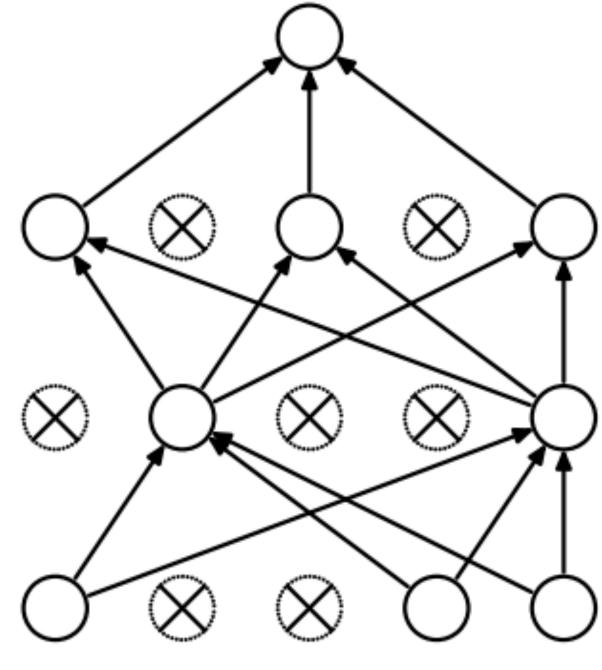
(f) Generative Parsing (Development Set)

Dropout

- Probabilistically zero out parts of the network during training to prevent overfitting, use whole network at test time
- Form of stochastic regularization
- Similar to benefits of ensembling: network needs to be robust to missing signals, so it has redundancy



(a) Standard Neural Net



(b) After applying dropout.

Dropout layers exist in PyTorch

Srivastava et al. (2014)

Nonconvex Optimization

- For logistic regression, there is a global optimum: sum of log probabilities is a convex function in the weights
- Neural networks are hard to optimize

Big Points

- ▶ Basic recipe (take gradients + apply update) is still the same
- Neural networks need to be initialized to nonzero values
- Optimizer choice is very important; use Adam unless you know what you're doing