
Greg	Durrett

CS378:	Natural	Language	Processing	
Lecture	6:	NN	Implementa=on

Announcements
‣ A1	due	today	at	5pm

‣ Goldberg	reading	link	fixed

‣ A2	out	late	tonight

Recall:	Feedforward	NNs

V

n	features

d	hidden	units

d	x	n	matrix num_classes	x	d	
matrix

soMmaxWf
(x
)

z

nonlinearity 
(tanh,	relu,	…)

g P
(y

|x
)

P (y|x) = softmax(Wg(V f(x)))
num_classes	
probs

Recall:	Training	Feedforward	NNs

P (y|x) = softmax(Wg(V f(x)))

‣ Maximize	log	likelihood	of	training	data.	For	one	point:

L(x, i⇤) = logP (y = i⇤|x) = log (softmax(Wz) · ei⇤)

‣ How	to	compute	the	gradient	with	respect	to	W	and	V?

Recall:	Backpropaga=on

V

d	hidden	units

soMmaxWf
(x
)

z
g P

(y
|x
)

P (y|x) = softmax(Wg(V f(x)))

@L
@W err(root)@z

@V
err(z)

zf(x)

This	Lecture
‣Neural	net	implementa=on	/	PyTorch	101

‣ Word	representa=ons

‣ Neural	net	training

Implemen=ng	Neural	Networks:	
PyTorch	101

Computa=on	Graphs
‣ Compu=ng	gradients	is	hard!

‣ Automa=c	differen=a=on:	instrument	code	to	keep	track	of	deriva=ves

y = x * x (y,dy) = (x * x, 2 * x * dx)
codegen

‣ Computa=on	is	now	something	we	need	to	reason	about	symbolically

‣ Use	a	library	like	Pytorch	or	Tensorflow.	This	class:	Pytorch

‣ Ensuing	code	examples	are	on	the	course	website:	ffnn_example.py	
under	“Readings”

PyTorch
‣ Framework	for	defining	computa=ons	that	provides	easy	access	to	
deriva=ves

torch.nn.Module‣ Module:	defines	a	neural	
network	(can	use	wrap	
other	modules	which	
implement	predefined	
layers)

forward(x):
#	Takes	an	example	x	and	computes	result

backward():	#	produced	automa=cally
#	Computes	gradient	aMer	forward()	is	called

…

…

‣ If	forward()	uses	crazy	
stuff,	you	have	to	write	
backward	yourself

Computa=on	Graphs	in	Pytorch

P (y|x) = softmax(Wg(V f(x)))

class FFNN(nn.Module):
 def __init__(self, input_size, hidden_size, out_size):
 super(FFNN, self).__init__()
 self.V = nn.Linear(input_size, hidden_size)
 self.g = nn.Tanh() # or nn.ReLU(), sigmoid()...
 self.W = nn.Linear(hidden_size, out_size)
 self.softmax = nn.Softmax(dim=0)

‣Define	forward	pass	for

 def forward(self, x):
 return self.softmax(self.W(self.g(self.V(x))))

apply	is	syntac=c	sugar	for	forward

Input	to	Network
‣Whatever	you	define	with	torch.nn	needs	its	input	as	some	sort	of	
tensor,	whether	it’s	integer	word	indices	or	real-valued	vectors

‣More	on	this	later

def form_input(x) -> torch.Tensor:
 # Index words/embed words/etc.
 return torch.from_numpy(x).float()

Training	and	Op=miza=on

P (y|x) = softmax(Wg(V f(x)))

ffnn = FFNN(inp, hid, out)

loss.backward()

probs = ffnn.forward(input)
loss = torch.neg(torch.log(probs)).dot(gold_label)

optimizer.step()

for (input, gold_label) in training_data:
ffnn.zero_grad() # clear gradient variables

one-hot	vector 
of	the	label  
(e.g.,	[0,	1,	0])

optimizer = optim.Adam(ffnn.parameters(), lr=lr)

nega=ve	log-likelihood	of	correct	answer

for epoch in range(0, num_epochs):

Op=miza=on	in	Pytorch

optimizer = optim.SGD(network.parameters(), lr=0.01)

optimizer = optim.Adam(network.parameters(), lr=0.001)

‣ Learning	rates	for	deep	learning	are	oMen	=ny!	(0.01	or	lower)

‣ Adam:	adap=ve	method,	incorporates	momentum	(gradient	is	smoothed	
with	running	average	of	past	gradients).	We	will	discuss	a	bit	more	but	
it’s	outside	the	scope	of	this	class.

Ini=aliza=on	in	Pytorch
class FFNN(nn.Module):
 def __init__(self, inp, hid, out):
 super(FFNN, self).__init__()
 self.V = nn.Linear(inp, hid)
 self.g = nn.Tanh()
 self.W = nn.Linear(hid, out)
 self.softmax = nn.Softmax(dim=0)  

‣ Ini=alizing	to	a	nonzero	value	is	cri=cal,	more	in	a	bit

nn.init.uniform(self.V.weight)

Training	a	Model
Define	a	computa=on	graph

For	each	epoch:

Compute	loss	on	batch

For	each	batch	of	data:

Decode	test	set

Autograd	to	compute	gradients	and	take	step

Zero	out	gradient

Ini=alize	weights	and	op=mizer

Batching	in	Neural	Networks

Batching

‣ Batching	data	gives	speedups	due	to	more	efficient	matrix	opera=ons

‣ Need	to	make	the	computa=on	graph	process	a	batch	at	the	same	=me

probs = ffnn.forward(input) # [batch_size, num_classes]
loss = torch.sum(torch.neg(torch.log(probs)).dot(gold_label))

...

‣ Batch	sizes	from	1-100	oMen	work	well

def make_update(input, gold_label)

input is [batch_size, num_feats]  
gold_label is [batch_size, num_classes]

...

Op=miza=on	Redux

Nonconvex	Op=miza=on
‣ For	logis=c	regression,	there	is	a	global	op=mum:	sum	of	log	
probabili=es	is	a	convex	func=on	in	the	weights

‣ Neural	networks	are	much	harder	to	op=mize!

How	does	ini=aliza=on	affect	learning?

V

n	features

d	hidden	units

d	x	n	matrix m	x	d	matrix

soMmaxWf
(x
)

z

nonlinearity 
(tanh,	relu,	…)

g P
(y

|x
)

P (y|x) = softmax(Wg(V f(x)))

‣How	do	we	ini=alize	V	and	W?	What	consequences	does	this	have?

‣Nonconvex	problem,	so	ini=aliza=on	makers!

‣ Nonlinear	model…how	does	this	affect	things?

‣ If	cell	ac=va=ons	are	too	large	in	absolute	value,	gradients	are	small

‣ ReLU:	larger	dynamic	range	(all	posi=ve	numbers),	but	can	produce	
big	values,	can	break	down	if	everything	is	too	nega=ve

How	does	ini=aliza=on	affect	learning? Ini=aliza=on
1)	Can’t	use	zeroes	for	parameters	to	produce	hidden	layers:	all	values	in	
that	hidden	layer	are	always	0	and	have	gradients	of	0,	never	change

‣ Can	do	random	uniform	/	normal	ini=aliza=on	with	appropriate	scale

‣ Fancier	ini=alizers	(Xavier	Glorot	ini=alizer,	Kaiming	He)	to	match	
variances	across	layers

2)	Ini=alize	too	large	and	cells	are	saturated

Op=mizer
‣ Adam	(Kingma	and	Ba,	ICLR	2015)	is	very	widely	used

‣ Adap=ve	step	size,	incorporates	momentum

Op=mizer
‣ Wilson	et	al.	NIPS	2017:	adap=ve	methods	can	actually	perform	badly	at	
test	=me	(Adam	is	in	pink,	SGD	in	black)
‣ Check	dev	set	periodically,	decrease	learning	rate	if	not	making	progress

Dropout
‣ Probabilis=cally	zero	out	parts	of	the	network	during	training	to	prevent	
overfinng,	use	whole	network	at	test	=me

Srivastava	et	al.	(2014)

‣ Similar	to	benefits	of	
ensembling:	network	
needs	to	be	robust	to	
missing	signals,	so	it	
has	redundancy

‣ Form	of	stochas=c	
regulariza=on	

‣Dropout	layers	exist	in	PyTorch

Nonconvex	Op=miza=on
‣ For	logis=c	regression,	there	is	a	global	op=mum:	sum	of	log	
probabili=es	is	a	convex	func=on	in	the	weights

‣ Neural	networks	are	hard	to	op=mize

‣ Basic	recipe	(take	gradients	+	apply	update)	is	s=ll	the	same

‣ Neural	networks	need	to	be	ini>alized	to	nonzero	values

‣ Op>mizer	choice	is	very	important;	use	Adam	unless	you	know	what	
you’re	doing

Big	Points

