

۲

			Similari	ty		
Method	WordSim	WordSim	Bruni et al.	Radinsky et al.	Luong et al.	Hill et al.
Method	Similarity	Relatedness	MEN	M. Turk	Rare Words	SimLex
PPMI	.755	.697	.745	.686	.462	.393
SVD	.793	.691	.778	.666	.514	.432
SGNS	.793	.685	.774	.693	.470	.438
GloVe	.725	.604	.729	.632	.403	.398

- SVD = singular value decomposition on PMI matrix
- GloVe does not appear to be the best when experiments are carefully controlled, but it depends on hyperparameters + these distinctions don't matter in practice

Levy et al. (2015)

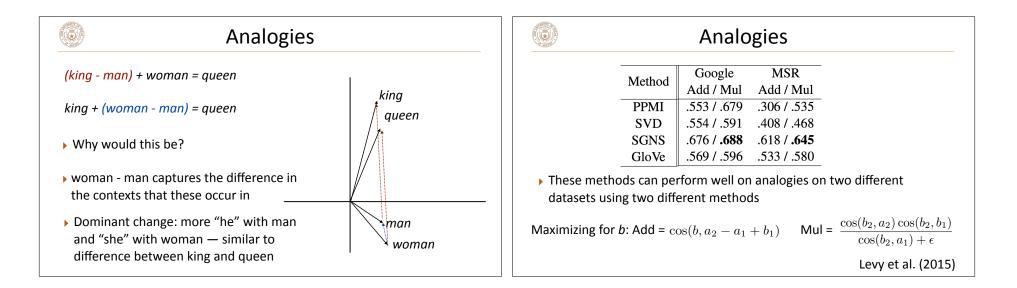
Hypernymy Detection

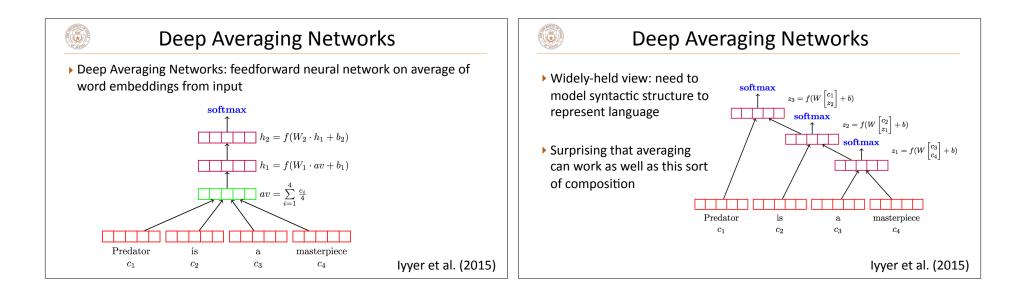
- Hypernyms: detective is a person, dog is a animal
- Do word vectors encode these relationships?

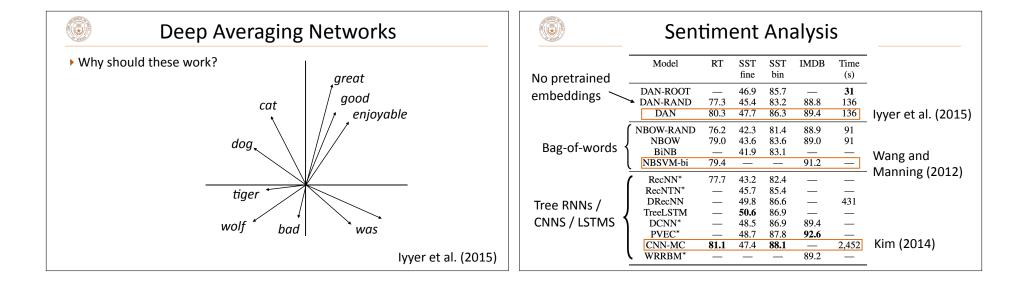
Dataset	TM14	Kotlerman 2010	HypeNet	WordNet	Avg (10 datasets)
Random	52.0	30.8	24.5	55.2	23.2
Word2Vec + C	52.1	39.5	20.7	63.0	25.3
GE + C	53.9	36.0	21.6	58.2	26.1
GE + KL	52.0	39.4	23.7	54.4	25.9
DIVE + $C \cdot \Delta S$	57.2	36.6	32.0	60.9	32.7

• word2vec (SGNS) works barely better than random guessing here

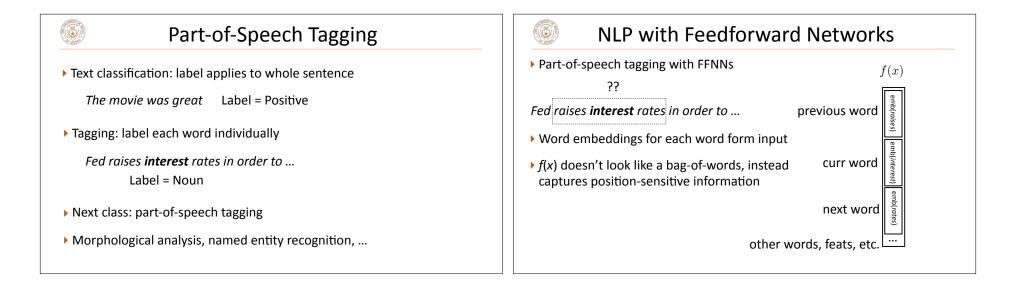
Chang et al. (2017)

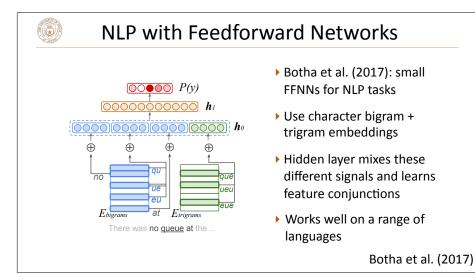






Deep Averaging I	Vetwo	orks	
Sentence	DAN	DRecNN	Ground Truth
who knows what exactly godard is on about in this film, but his words and images do n have to add up to mesmerize you.	positive	positive	positive
it's so good that its relentless, polished wit can withstand not only inept school productions, but even oliver parker's movie adaptation	negative	positive	positive
too bad, but thanks to some lovely comedic moments and several fine performances, it's not a total loss	negative	negative	positive
this movie was not good	negative	negative	negative
this movie was good	positive	positive	positive
this movie was bad	negative	negative	negative
the movie was not bad	negative	negative	positive
Will return to compositionality with syntax	and LSTN	∕ls Iyy∉	er et al. (2015)





Takeaways

- Continuous bag-of-words, Skip-gram, and Skip-gram with negative sampling are all similar ways to learn embeddings
- Matrix factorization approaches like GloVe are most standard
- Averaging inputs to feedforward networks can work well, will see other approaches later
- Later in the class: approaches to create "contextualized" word embeddings