
CS378 Lecture Note: Viterbi Algorithm

1 Viterbi Algorithm

The Viterbi algorithm is an algorithm for performing inference in Hidden Markov Models. Briefly, a Hidden
Markov Model is defined by

P (y,x) = PS(y1)PE(x1|y1)

[
n∏

i=2

PT (yi|yi−1)PE(xi|yi)

]
PT (STOP|yn) (1)

(there are many correct ways to write this formula). We want to compute argmaxy P (y|x), the most likely

tag sequence given some input words x. This is equivalent to computing argmaxy
P (y,x)
P (x) = argmaxy P (y,x),

due to Bayes’ rule and the fact that the ensuing denominator does not depend on y.
Let |T | be the number of tags and let n be the length of a sentence under consideration. Assume that

tags and words are both indexed, so that both words and tags can be represented as integers. The set of tags
should contain a STOP token.

Model Viterbi requires the model parameters as input, which are typically estimated from training data.

1. Initial (start) probabilities: logPS(y1 = y). These can be stored in a vector S[i] = logPS(y = i)

2. Transition probabilities: logPT (yi = y|yi−1 = yprev). These can be stored in a matrix T [i, j] =
logPT (y = j|yprev = i)

3. Emission probabilities: logPE(xi = x|y = yi). These can be stored in a matrix E[i, j] = logPE(x =
j|y = i)

Algorithm We’re now ready to describe the algorithm (see next page):

1

Algorithm 1 Viterbi Algorithm

1: function VITERBI(x, S, T,E) . x: sentence of length n, S: initial log probs, T : transition log probs,
E: emission log probs

2: Initialize v, a n× |T | matrix
3: for y = 1 to |T | do . Handle the initial state
4: v[1, y] = S[y] + E[y, x1]
5: end for
6: for i = 2 to n do
7: for y = 1 to |T | do
8: v[i, y] = E[y, xi] + maxyprev

(
T [yprev, y] + v[i− 1, yprev]

)
9: end for

10: end for
11: for y = 1 to |T | do . Handle the final state
12: v[n, y] = v[n, y] + T [y,STOP]
13: end for
14: Best final state = argmaxy v[n, y]
15: By tracking argmaxes in the algorithm in addition to maxes, you can reconstruct the answer
16: end function

For further reference, Wikipedia has a similar implementation,1 but not in log space. That is, rather than
adding up log probabilities, they multiply probabilities, which is riskier numerically.

1.1 Variants

The critical operations in the above algorithm are the + operations (to combine log probability values) and
the max operations

1. max, +: Viterbi algorithm in log space, as shown above (expects log-probability matrices as input)

2. max, ×: Viterbi algorithm in real space (expects probability matrices as input)

3. +,×: sum-product algorithm (also called the forward algorithm) in real space. Can be used to compute
P (x) =

∑
y P (x,y). Can be combined with a version of this algorithm called the backward algorithm

to compute P (yi|x) for each position i in the sentence. This is outside the scope of this course, but is
discussed more in the textbook.

4. log-sum, +: sum-product algorithm in log space. log-sum(a, b) = log(exp(a) + exp(b)); that is, it
takes two log-probabilities, turns them into probabilities, adds them together, and re-logs them. There
is no other way to “add” log probabilities, since adding in log space means multiplying the underlying
probabilities.

1https://en.wikipedia.org/wiki/Viterbi algorithm

2

