Using RNNSs



What do RNNs produce?

\

ﬂ

the movie was great

» Encoding of the sentence (final hi/c;) — can pass this a decoder or make a
classification decision about the sentence

» Encoding of each word (each h;) — can pass this to another layer to make
a prediction (can also pool these to get a different sentence encoding)

» RNN can be viewed as a transformation of a sequence of vectors into a
sequence of context-dependent vectors



RNN Uses

» Transducer: make some prediction for each element in a sequence

DT NN VBD JJ
output y = score for each tag, then softmax

r 1t 1t 1

the movie was great

» Acceptor/encoder: encode a sequence into a fixed-sized vector and use

that for some purpose
predict sentiment (matmul + softmax)

;I—»;F»;I—»;I< translate
paraphrase/compress

the movie was great



Multilayer Bidirectional RNN

e
| i

» Token classification based on

I:I concatenation of both directions’
I:I token representations

I | —

» Sentence classification
based on concatenation
of both final outputs



What do LSTMs return in PyTorch?

» Hidden/cell states are a 2-tuple,
—H tensors of size

[num layers * num directions,

batch size, dimensionality]
; » 2x1xdim here

1 1 1
I ) IS | B | E— » Outputs are a single tensor of size

the movie was great , , ,
[seq len, batch size, num directions

* hidden size]

» 4x1xdim here



Training RNNSs

the movie was great

» Loss = negative log likelihood of probability of gold label (or use SVM
or other loss)

» Backpropagate through entire network, RNN parameters get a
gradient update from each timestep

» Example: sentiment analysis



Training RNNSs

the movie was great

» Loss = negative log likelihood of probability of gold predictions,
summed over the tags

» Loss terms filter back through network

» Example: language modeling (predict next word given context)



RNN Language Modeling



RNN Language Modeling

word probs . h.
P(w|context) = Xp(W - h)
N Zw, exp(w’ - hl)
Iﬁl ﬂ equivalent to
| saw the dog P(w|context) = softmax(Wh,)

» W is a (vocab size) x (hidden size) matrix; linear layer in PyTorch (rows
are word embeddings)



Training RNNLMs

| saw the dog running

I | I |
<s> | saw the dog

» Input is a sequence of words, output is those words shifted by one,

» Allows us to train on predictions across several timesteps simultaneously
(similar to batching but this is NOT what we refer to as batching)



Training RNNLMs

1 P(w]|context)

—— “loss = — log P(w™* | context)

____
I s B o
I | | |
|  saw the dog

» Total loss = sum of negative log likelihoods at each position

» In PyTorch: simply add the losses together and call .backward()



-------------------------------------------------------------------------------------------------------------------------------

----------------------------------------------------------------------------------------------------------------------------

Batched LM Trammg

batch dirm / ( looked very excited to be h

g |  saw the dog running\
I | |
I |

_ <S> |  saw the dog Y

<S> '
KS IN

g in the park and it

~
e
Halinl
e

the park and JJ

» Multiple sequences and multiple
timesteps per sequence



Batched LM Training

» torch.nn.LSTM / torch.nn.GRU: expect input in [seq len, batch, word dim]
format

executed in parallel ) |nput: [4, 2, dim]

----------

\

-----------

» Cannot parallelize across timesteps
of RNN since output depends on

: : previous timesteps, so using larger

| SaW the dog batches gives better parallelism

in the park and

e o

--------------------



Other Implementation Details

» torch.nn.Embedding: maps sequence of word indices to vectors

» [126, 285] -> [[0.1, -0.07, 1.2],
-2.3,0.2, 1.4]]

» Moves from [sequence length] vector of indices -> [seq len, dim] tensor
or [batch, sequence length] matrix -> [batch, seq len, dim tensor]



LM Evaluation

» Accuracy doesn’t make sense — predicting the next word is generally
impossible so accuracy values would be very low

» Evaluate LMs on the likelihood of held-out data (averaged to
normalize for length)

1 (4’
E ZlogP(wiWh ' . vwi—l)
1=1

» Perplexity: exp(average negative log likelihood). Lower is better

» Suppose we have probs 1/4, 1/3, 1/4, 1/3 for 4 predictions

» Avg NLL (base e) =1.242 Perplexity = 3.464 <== geometric mean of
denominators



Visualizing LSTM LMs



Visualizing LSTMs

» Train character LSTM language model (predict next character based on
history) over two datasets: War and Peace and Linux kernel source code

» Visualize activations of specific cells (components of ¢) to understand them

C

—[| Plot this value over timesteps,
blue is smaller, red is larger

T h o

Karpathy et al. (2015)



Visualizing LSTMs

» Train character LSTM language model (predict next character based on
history) over two datasets: War and Peace and Linux kernel source code

» Visualize activations of specific cells (components of ¢) to understand them

» Counter: know when to generate \n

The sole 1mportance of the crossing of the Berezina lies in the fact
that it plainly and indubitably proved the fallacy of all the plans for
cutting off the enemy's retreat and the soundness of the only possible
line of action--the one Kutuzov and ¢th general mass of the army
demanded--namely, simply to follow the enemy up. The French crowd fled

at a continually i1ncreasing speed and all its energy was directed to
reaching its goal. It fled like a wounded animal and it was impossible
to block 1ts path. This was shown not so much by the arrangements 1it
made for crossing as by what took place at the bridges. When the bridges
broke down, unarmed soldiers, people from Moscow and women with children
Who were with the French transport, all--carried on by wvis 1inertiae- -
pressed forward into boats and into the i1ice-covered water and did not,
surrender.

Karpathy et al. (2015)



Visualizing LSTMs

» Train character LSTM language model (predict next character based on
history) over two datasets: War and Peace and Linux kernel source code

» Visualize activations of specific cells to see what they track

» Binary switch: tells us if we’re in a quote or not

Karpathy et al. (2015)



Visualizing LSTMs

» Train character LSTM language model (predict next character based on
history) over two datasets: War and Peace and Linux kernel source code

» Visualize activations of specific cells to see what they track

» Stack: activation based on indentation

#ifdef CONFIG_AUDITSYSCALL
static inline int audit_match_class_bits(int class, u32 "mask)
{
o I T - (-
i Elasseslclassl) #

fior (2 = @2 1 < AUDET _BITHNASKEESIEEDHET)

iT (maskiil] & slassesiclass]ixn)

"eturn 6

return 1;

Karpathy et al. (2015)



Visualizing LSTMs

» Train character LSTM language model (predict next character based on
history) over two datasets: War and Peace and Linux kernel source code

» Visualize activations of specific cells to see what they track

» Uninterpretable: probably doing double-duty, or only makes sense in the
context of another activation

pECl{ltr-eld-trEno representation from uUser-space
buffer
{lhar faudit pAlckDstring(lllid *Hvufp, sEzeltHIENEE", SHzemt: NHEN)

hilr @ *

Karpathy et al. (2015)



State-of-the-art LMs

» Good LSTM LMs have ~27M params, 4-5 layers

» Kneser-Ney 5-gram model with cache: PPL =125.7

» LSTM: PPL ~ 60-80 (depending on how much you optimize it)

» LSTM character-level: PPL ~1.5 (205 character vocab)

» Better language models using transformers (will discuss after MT)

Melis et al. (2017)



Assessing the Ability of LSTMs to
Learn Syntax-Sensitive Dependencies



Predicting Subject-Verb Agreement

» Predict whether a verb should be singular or plural

The roses are red The chair is red

» Challenging because there can be preposition phrases, relative clauses,
etc. in between (attractors) that confuse the model:

The roses in the vase by the door are red

t
door is red? bigram model would

get confused by attractors

Linzen et al. (2016)



Predicting Subject-Verb Agreement

20%
Last intervening noun
» Attractors don’t fool an 15% BN None
B Plural
LSTM too much! Only wrong dra
10% B Singular

5-6% of the time even in
these tricky cases

Error rate

5%

0%

: Plural subject Singular subject
The roses in the vase by the door are red

Linzen et al. (2016)



Predicting Subject-Verb Agreement

» Averaged activations over 40 Unit 1° PP
sentences of the form “the Xs of 1.0
the Ys” [is/are] 0.5
X, Y
The crown of the king is... [X/Y] 0.0 X. Ys
The crowns of the king are... [Xs/Y] -0.5 e ve
The fable of the peasants is... [X/Ys
P [ | N\ +\c’\ S \‘S\QJ ,\@

The houses of the peasants are... [Xs/Ys]

» This neuron appears to have different
values for Xs than for singular X

Linzen et al. (2016)



Recap and Next time

» LSTM forget gates help control sensitivity to old/new information

» LSTMs are a neural network module that can be used in both
classification and sequence labeling. Can also be viewed as
transforming a sequence of word embeddings into a sequence of
new embeddings, now aware of context

» LSTMs are able to learn regular patterns in language: when text is
guoted, subject-verb agreement

» Next time: machine translation



