
Using	RNNs

What	do	RNNs	produce?

‣ Encoding	of	each	word	(each	hi)	—	can	pass	this	to	another	layer	to	make	
a	predic?on	(can	also	pool	these	to	get	a	different	sentence	encoding)

=

‣ Encoding	of	the	sentence	(final	hi/ci)	—	can	pass	this	a	decoder	or	make	a	
classifica?on	decision	about	the	sentence

the		movie		was			great

‣ RNN	can	be	viewed	as	a	transforma?on	of	a	sequence	of	vectors	into	a	
sequence	of	context-dependent	vectors

RNN	Uses
‣ Transducer:	make	some	predic?on	for	each	element	in	a	sequence

‣ Acceptor/encoder:	encode	a	sequence	into	a	fixed-sized	vector	and	use	
that	for	some	purpose

the		movie		was			great

predict	sen?ment	(matmul	+	soNmax)

translate

the		movie		was			great

DT						NN				VBD					JJ

paraphrase/compress

output	y	=	score	for	each	tag,	then	soNmax

Mul?layer	Bidirec?onal	RNN

‣ Sentence	classifica?on	
based	on	concatena?on	
of	both	final	outputs

‣ Token	classifica?on	based	on	
concatena?on	of	both	direc?ons’	
token	representa?ons

the		movie		was			great the		movie		was			great



What	do	LSTMs	return	in	PyTorch?

the		movie		was			great

‣ Hidden/cell	states	are	a	2-tuple,	
tensors	of	size	
[num_layers	*	num_direc?ons,	
batch	size,	dimensionality]

‣ 2x1xdim	here

‣Outputs	are	a	single	tensor	of	size	
[seq_len,	batch	size,	num_direc?ons	
*	hidden_size]

‣ 4x1xdim	here

Training	RNNs

the		movie		was			great

‣ Loss	=	nega?ve	log	likelihood	of	probability	of	gold	label	(or	use	SVM	
or	other	loss)

P (y|x)

‣ Backpropagate	through	en?re	network,	RNN	parameters	get	a	
gradient	update	from	each	?mestep

‣ Example:	sen?ment	analysis

Training	RNNs

the		movie		was			great

‣ Loss	=	nega?ve	log	likelihood	of	probability	of	gold	predic?ons,	
summed	over	the	tags

‣ Loss	terms	filter	back	through	network

P (ti|x)

‣ Example:	language	modeling	(predict	next	word	given	context)

RNN	Language	Modeling



RNN	Language	Modeling

I							saw				the				dog

hi

P (w|context) = exp(w · hi)P
w0 exp(w0 · hi)

P (w|context) = softmax(Whi)

‣ W	is	a	(vocab	size)	x	(hidden	size)	matrix;	linear	layer	in	PyTorch	(rows	
are	word	embeddings)

equivalent	to

word	probs

=

Training	RNNLMs

<s>							I							saw				the				dog

‣ Input	is	a	sequence	of	words,	output	is	those	words	shiNed	by	one,

I							saw				the				dog		running

‣ Allows	us	to	train	on	predic?ons	across	several	?mesteps	simultaneously	
(similar	to	batching	but	this	is	NOT	what	we	refer	to	as	batching)

Training	RNNLMs

I							saw				the				dog

‣ Total	loss	=	sum	of	nega?ve	log	likelihoods	at	each	posi?on

‣ In	PyTorch:	simply	add	the	losses	together	and	call	.backward()

P(w|context)

loss	=	—	log	P(w*|context)

Batched	LM	Training
I	saw	the	dog	running	in	the	park	and	it	looked	very	excited	to	be	there

<s>							I							saw				the				dog

I							saw				the				dog		running

<s>						in						the				park			and

in						the				park			and					it
batch	dim

‣Mul?ple	sequences	and	mul?ple	
?mesteps	per	sequence

looked	very	excited	to	be



Batched	LM	Training
‣ torch.nn.LSTM	/	torch.nn.GRU:	expect	input	in	[seq	len,	batch,	word	dim]	
format

executed	in	parallel

‣ Cannot	parallelize	across	?mesteps	
of	RNN	since	output	depends	on	
previous	?mesteps,	so	using	larger	
batches	gives	bejer	parallelism

‣ Input:	[4,	2,	dim]	

I							saw				the				dog

in						the				park			and

Other	Implementa?on	Details
‣ torch.nn.Embedding:	maps	sequence	of	word	indices	to	vectors

‣ [126,	285]	->	[[0.1,	-0.07,	1.2],	
																									[-2.3,	0.2,	1.4]]

‣Moves	from	[sequence	length]	vector	of	indices	->	[seq	len,	dim]	tensor	
or	[batch,	sequence	length]	matrix	->	[batch,	seq	len,	dim	tensor]

LM	Evalua?on

‣ Accuracy	doesn’t	make	sense	—	predic?ng	the	next	word	is	generally	
impossible	so	accuracy	values	would	be	very	low

‣ Evaluate	LMs	on	the	likelihood	of	held-out	data	(averaged	to	
normalize	for	length)

1

n

nX

i=1

logP (wi|w1, . . . , wi�1)

‣ Perplexity:	exp(average	nega?ve	log	likelihood).	Lower	is	bejer

‣ Suppose	we	have	probs	1/4,	1/3,	1/4,	1/3	for	4	predic?ons
‣ Avg	NLL	(base	e)	=	1.242					Perplexity	=	3.464	<==	geometric	mean	of	
																																																																																									denominators

Visualizing	LSTM	LMs



Visualizing	LSTMs
‣ Train	character	LSTM	language	model	(predict	next	character	based	on	
history)	over	two	datasets:	War	and	Peace	and	Linux	kernel	source	code

Karpathy	et	al.	(2015)

‣ Visualize	ac?va?ons	of	specific	cells	(components	of	c)	to	understand	them

T									h								e									_

c

Plot	this	value	over	?mesteps,	
blue	is	smaller,	red	is	larger

Visualizing	LSTMs
‣ Train	character	LSTM	language	model	(predict	next	character	based	on	
history)	over	two	datasets:	War	and	Peace	and	Linux	kernel	source	code

Karpathy	et	al.	(2015)

‣ Counter:	know	when	to	generate	\n
‣ Visualize	ac?va?ons	of	specific	cells	(components	of	c)	to	understand	them

Visualizing	LSTMs

Karpathy	et	al.	(2015)

‣ Binary	switch:	tells	us	if	we’re	in	a	quote	or	not
‣ Visualize	ac?va?ons	of	specific	cells	to	see	what	they	track

‣ Train	character	LSTM	language	model	(predict	next	character	based	on	
history)	over	two	datasets:	War	and	Peace	and	Linux	kernel	source	code

Visualizing	LSTMs

Karpathy	et	al.	(2015)

‣ Stack:	ac?va?on	based	on	indenta?on
‣ Visualize	ac?va?ons	of	specific	cells	to	see	what	they	track

‣ Train	character	LSTM	language	model	(predict	next	character	based	on	
history)	over	two	datasets:	War	and	Peace	and	Linux	kernel	source	code



Visualizing	LSTMs

Karpathy	et	al.	(2015)

‣ Uninterpretable:	probably	doing	double-duty,	or	only	makes	sense	in	the	
context	of	another	ac?va?on

‣ Visualize	ac?va?ons	of	specific	cells	to	see	what	they	track

‣ Train	character	LSTM	language	model	(predict	next	character	based	on	
history)	over	two	datasets:	War	and	Peace	and	Linux	kernel	source	code

State-of-the-art	LMs

Melis	et	al.	(2017)

‣ Good	LSTM	LMs	have	~27M	params,	4-5	layers

‣ Bejer	language	models	using	transformers	(will	discuss	aNer	MT)

‣ Kneser-Ney	5-gram	model	with	cache:	PPL	=	125.7

‣ LSTM:	PPL	~	60-80	(depending	on	how	much	you	op?mize	it)

‣ LSTM	character-level:	PPL	~1.5	(205	character	vocab)

Assessing	the	Ability	of	LSTMs	to	
Learn	Syntax-Sensi?ve	Dependencies

Predic?ng	Subject-Verb	Agreement

Linzen	et	al.	(2016)

‣ Predict	whether	a	verb	should	be	singular	or	plural

The	roses	are	red The	chair	is	red

‣ Challenging	because	there	can	be	preposi?on	phrases,	rela?ve	clauses,	
etc.	in	between	(a)ractors)	that	confuse	the	model:

door	is	red?	bigram	model	would	
get	confused	by	a)ractors

The	roses	in	the	vase	by	the	door	are	red



Predic?ng	Subject-Verb	Agreement

‣ Ajractors	don’t	fool	an	
LSTM	too	much!	Only	wrong	
5-6%	of	the	?me	even	in	
these	tricky	cases

The	roses	in	the	vase	by	the	door	are	red

Linzen	et	al.	(2016)

Predic?ng	Subject-Verb	Agreement

‣ Averaged	ac?va?ons	over	40	
sentences	of	the	form	“the	Xs	of	
the	Ys”	[is/are]

‣ This	neuron	appears	to	have	different	
values	for	Xs	than	for	singular	X

The	crown	of	the	king	is…	[X/Y]

The	crowns	of	the	king	are…	[Xs/Y]

The	fable	of	the	peasants	is…	[X/Ys]

The	houses	of	the	peasants	are…	[Xs/Ys]

Linzen	et	al.	(2016)

Recap	and	Next	?me

‣ Next	?me:	machine	transla?on

‣ LSTMs	are	able	to	learn	regular	pajerns	in	language:	when	text	is	
quoted,	subject-verb	agreement

‣ LSTM	forget	gates	help	control	sensi?vity	to	old/new	informa?on

‣ LSTMs	are	a	neural	network	module	that	can	be	used	in	both	
classifica?on	and	sequence	labeling.	Can	also	be	viewed	as	
transforming	a	sequence	of	word	embeddings	into	a	sequence	of	
new	embeddings,	now	aware	of	context


