Using RNNs

What do RNNs produce?

- **Encoding of each word** (each h_i) — can pass this to another layer to make a prediction (can also pool these to get a different sentence encoding)
- **Encoding of the sentence** (final h/c) — can pass this a decoder or make a classification decision about the sentence
- RNN can be viewed as a transformation of a sequence of vectors into a sequence of context-dependent vectors

RNN Uses

- **Transducer**: make some prediction for each element in a sequence

 - output $y = \text{score for each tag, then softmax}$

 - predict sentiment (matmul + softmax)

- **Acceptor/encoder**: encode a sequence into a fixed-sized vector and use that for some purpose

 - translate

 - paraphrase/compress

Multilayer Bidirectional RNN

- **Sentence classification** based on concatenation of both final outputs

 - Token classification based on concatenation of both directions’ token representations
What do LSTMs return in PyTorch?

- **Hidden/cell** states are a 2-tuple, tensors of size
 \[[\text{num_layers} \times \text{num_directions}, \text{batch size}, \text{dimensionality}] \]
 - 2x1xdim here
- **Outputs** are a single tensor of size
 \[[\text{seq_len}, \text{batch size}, \text{num_directions} \times \text{hidden_size}] \]
 - 4x1xdim here

Training RNNs

- Loss = negative log likelihood of probability of gold label (or use SVM or other loss)
- Backpropagate through entire network, RNN parameters get a gradient update from each timestep
- Example: sentiment analysis

RNN Language Modeling

- Loss = negative log likelihood of probability of gold predictions, summed over the tags
- Loss terms filter back through network
- Example: language modeling (predict next word given context)
RNN Language Modeling

\[P(w|\text{context}) = \frac{\exp(w \cdot h_i)}{\sum_{w'} \exp(w' \cdot h_i)} \]

equivalent to

\[P(w|\text{context}) = \text{softmax}(W_h_i) \]

- \(W \) is a (vocab size) x (hidden size) matrix; linear layer in PyTorch (rows are word embeddings)

Training RNNLMs

- Input is a sequence of words, output is those words shifted by one,
- Allows us to train on predictions across several timesteps simultaneously (similar to batching but this is NOT what we refer to as batching)

Training RNNLMs

- Total loss = sum of negative log likelihoods at each position
- In PyTorch: simply add the losses together and call .backward()
Batched LM Training

- `torch.nn.LSTM / torch.nn.GRU`: expect input in `[seq len, batch, word dim]` format, executed in parallel.
- Input: `[seq len, batch, word dim]`
- Cannot parallelize across timesteps of RNN since output depends on previous timesteps, so using larger batches gives better parallelism.

Other Implementation Details

- `torch.nn.Embedding`: maps sequence of word indices to vectors.
 - Example: `[126, 285] -> [[0.1, -0.07, 1.2], [-2.3, 0.2, 1.4]]`
- Moves from `[sequence length]` vector of indices -> `[seq len, dim]` tensor or `[batch, sequence length]` matrix -> `[batch, seq len, dim tensor]`

LM Evaluation

- Accuracy doesn’t make sense — predicting the next word is generally impossible so accuracy values would be very low.
- Evaluate LMs on the likelihood of held-out data (averaged to normalize for length):
 \[
 \frac{1}{n} \sum_{i=1}^{n} \log P(w_i | w_1, \ldots, w_{i-1})
 \]
- Perplexity: exp(average negative log likelihood). Lower is better.
 - Suppose we have probs 1/4, 1/3, 1/4, 1/3 for 4 predictions
 - Avg NLL (base e) = 1.242 Perplexity = 3.464 <= geometric mean of denominators

Visualizing LSTM LMs
Train character LSTM language model (predict next character based on history) over two datasets: War and Peace and Linux kernel source code

- Visualize activations of specific cells (components of c) to understand them

Plot this value over timesteps, blue is smaller, red is larger

Karpathy et al. (2015)

The tale importance of the crossing of the Donuzlma lies in the fact that it plainly and indisputably proved the fallacy of all the plans for cutting off the enemy’s retreat and the soundness of the only possible line of action—the one Kutuzov and the general mass of the army demanded namely, simply to follow the enemy up. The French, crowded at a continually increasing speed and all its energy was directed to reaching its goal. It fled like a wounded animal and it was impossible to block its path. This was shown not so much by the arrangements it made for crossing as by what took place at the bridges. When the bridges broke down, unarmed soldiers, people from Moscow and women with children who were with the French transport, all—carried on by vis inertia—pressed forward into boats and into the ice-covered water and did not surrender.

Karpathy et al. (2015)

Train character LSTM language model (predict next character based on history) over two datasets: War and Peace and Linux kernel source code

- Visualize activations of specific cells (components of c) to understand them

- Counter: know when to generate \n
- Binary switch: tells us if we’re in a quote or not

"You mean to imply that I have nothing to eat out of—on the contrary, I can supply you with everything even if you want to give dinner parties,” merely replies Chekhov, who tried to every word spoken to prove his own resitute and therefore imagined Kutuzov to be dead by the last report.

Karpathy et al. (2015)

Train character LSTM language model (predict next character based on history) over two datasets: War and Peace and Linux kernel source code

- Visualize activations of specific cells to see what they track

- Stack: activation based on indentation

```
#define CONFIG_AUDITOSCAL

static inline int audit_watch_class_bits(int class, u32 *mask)
{
    if (class & (class - 1))
        return -1;
    for (u32 i = class - 1; i > 0; i = (i - 1) & class - 1)
        if (class & i)
            return -1;

    return 0;
}
```

Karpathy et al. (2015)
Visualizing LSTMs

- Train character LSTM language model (predict next character based on history) over two datasets: War and Peace and Linux kernel source code
- Visualize activations of specific cells to see what they track
- Uninterpretable: probably doing double-duty, or only makes sense in the context of another activation

State-of-the-art LMs

- Good LSTM LMs have ~27M params, 4-5 layers
- Kneser-Ney 5-gram model with cache: PPL = 125.7
- LSTM: PPL ~ 60-80 (depending on how much you optimize it)
- LSTM character-level: PPL ~1.5 (205 character vocab)
- Better language models using transformers (will discuss after MT)

Assessing the Ability of LSTMs to Learn Syntax-Sensitive Dependencies

- Predict whether a verb should be singular or plural
 - The roses are red The chair is red
- Challenging because there can be preposition phrases, relative clauses, etc. in between (attractors) that confuse the model:
 - The roses in the vase by the door are red
 - door is red? bigram model would get confused by attractors

Predicting Subject-Verb Agreement

- Predict whether a verb should be singular or plural
 - The roses are red The chair is red
- Challenging because there can be preposition phrases, relative clauses, etc. in between (attractors) that confuse the model:
 - The roses in the vase by the door are red
Attractors don’t fool an LSTM too much! Only wrong 5-6% of the time even in these tricky cases.

The roses in the vase by the door are red

Linzen et al. (2016)

Averaged activations over 40 sentences of the form “the Xs of the Ys” [is/are]

- The crown of the king is... [X/Y]
- The crowns of the king are... [Xs/Y]
- The fable of the peasants is... [X/Ys]
- The houses of the peasants are... [Xs/Ys]

This neuron appears to have different values for Xs than for singular X

Linzen et al. (2016)

- LSTM forget gates help control sensitivity to old/new information
- LSTMs are a neural network module that can be used in both classification and sequence labeling. Can also be viewed as transforming a sequence of word embeddings into a sequence of new embeddings, now aware of context
- LSTMs are able to learn regular patterns in language: when text is quoted, subject-verb agreement
- Next time: machine translation