Decoding in Phrase-Based Machine
Translation

(Building the translation)
Not required for the homework

Phrase-Based Decoding

» Noisy channel model: P(e|f) « P(f|e) P(e) (ignore P(f) term)
Translation Language
model (TM) model (LM)

» Inputs needed

» Language model that scores P(e;le1,...,e;_1) ~ P(e;lei—n_1,...,6_1)

» Phrase table: set of phrase pairs (e, f) with probabilities P(f| e)

» What we want to find: e produced by a series of phrase-by-phrase
translations from an input f

Phrase Lattice
[| we Tootown] o] %0] oo | vl

—_—lary

did not _a_sla.p__b;; —green witch
R o Vo W slap ta the
—did not _give —_—to
—_— the
slap the witch

» Given an input sentence, look at our phrase table to find all possible
translations of all possible spans

» Monotonic translation: need to translate each word in order, explore
paths in the lattice that don’t skip any words

» Looks like Viterbi, but the scoring is more complicated

Koehn (2004)

Monotonic Translation
[| e o] o] o0 o | veow

—_—lary —green
did not _a_sla.p__b;; —green witch
—_—Dno. —_—ta the
—did not _give —_—to
—_— the
slap the witch

» If we translate with beam search, what state do we need to keep in the
beam?

» Score arg max | || P(fle) - || Pleilei-1,ei 2)
s f =1

e

» Where are we in the sentence

» What words have we produced so far (actually only need
to remember the last 2 words when using a 3-gram LM)

Monotonic Translation

—~witch

—the

,' did not “ _a_sla.p_ —b;; —green witch
’ S & Vo M slap ta the
,' _d.].d_D.Q.tl‘g.ULL -———eeVto
[\ } —th-h
h A slap the witch
v “u
Mary did not » Beam state: where we’re at, what
idx = -1.1 dx=2 |01 the current translation so far is,
and score of that translation
_> Mary not 19
idx = 2 | » Advancing state consists of trying
each possible translation that
Mary no .
S -2.9 could get us to this timestep

Monotonic Translation

ol dto | une bofetada] a | 1a | brwia | verde
nozt —_—ilve —the = __watch = __green

—Mary ,
dig not _a_sla.p_ _b;; —green witch
"no slap ta the
—edid not _give —ee O
! —_—the
, slap the witch
v
...did not ,
dy = 9 -0.1| score = log [P(Mary) P(not | Mary) P(Maria | Mary) P(no | not)]
— Y——m———
Mary not | . / LM ™
idx =2 |
| Ity: = +
Mary no n reality: score = a Iog. P(LM) + B log P.(TIVI)
I -2.9 ...and TM is broken down into several features

Monotonic Translation
—————

—_—lMary = o noi _g.uze_‘ —the —green
—_——no ‘ —_—to the
—did not _give N —_—to
“ —_— the
Yoslap the witch
) S
~\
 \

» Two ways to get
here: Maria + no dio
or Maria no + dio

» Beam is filled with
options from multiple
segmentations of input

Monotonic Translation

» With beam size k =
infinity, how many
possible entries in
the beam here?

Non-Monotonic Translation
————

—_—lary
did not _b;; —green witch
R o Vo W slap ta the
—did not _give —_—to
—_— the
slap the witch

» More flexible model: can visit source
sentence “out of order”

» State needs to describe which
words have been translated
and which haven’t

e: Mary did not

e: Mary slap

Fo *_kdkk____

p: .043

» Big enough phrases already

capture lots of reorderings, so this translated: Maria, dio,
isn’t as important as you think una, bofetada

Training Decoders

9480

] T T
unsmoothed error count
smoothed error rate (alpha=3) -------

score = a log P(t) + B log P(s|t)

..and P(s|t) is in fact more complex

9460 -

» Usually 5-20 feature weights to set,
want to optimize for BLEU score
which is not differentiable

9450

9440

error count

» MERT (Och 2003): decode to get 1000-
best translations for each sentence in a
small training set (<1000 sentences), do
line search on parameters to directly
optimize for BLEU

9420 -

Moses

» Toolkit for machine translation due to Philipp Koehn + Hieu Hoang

» Pharaoh (Koehn, 2004) is the decoder from Koehn’s thesis

» Moses implements word alignment, language models, and this
decoder, plus a ton more stuff

» Highly optimized and heavily engineered, could more or less
build SOTA translation systems with this from 2007-2013

Moses

SOURCE Cela constituerait une solution transitoire qui permettrait de

conduire a terme a une charte a valeur contraignante.

That would be an interim solution which would make it possible to

NUMAN work towards a binding charter in the long term .
[this] [constituerait] [assistance] [transitoire] [who] [permettrait]
1x DATA [licences] [to] [terme] [to] [a] [charter] [to] [value] [contraighante] [.]
1 Ox DATA [itf] [would] [a solution] [transitional] [which] [would] [of] [lead]
% [to] [term] [to a] [charter] [to] [value] [binding] [.]
[this] [would be] [a transitional solution] [which would] [lead to] [a
100xDATA - charter] [legally binding] [.]
1000x DATA [that would be] [a transitional solution] [which would] [eventually slide credit:

lead to] [a binding charter] |[.] Dan Klein

Evaluating MT

Evaluating MT

» Fluency: does it sound good in the target language?

» Fidelity/adequacy: does it capture the meaning of the original?

» Automatic evaluation tries to approximate this...

» BLEU score: geometric mean of 1-, 2-, 3-, and 4-gram precision vs. a
reference, multiplied by brevity penalty (penalizes short translations)

» 1-gram precision: do you predict words that are in the reference?

» 4-gram precision: to get this right, you need those words to be in the
right order!

» Better metrics: human-in-the-loop variants

Syntactic MT

Svyntactic MT

» Rather than use phrases, use a synchronous context-free grammar

NP — [DT1JJ2 NN3; DT1 NN3 JJ;]
DT — [the, |a]
DT — [the, le]
NN — [car, voiture]
JJ — [yellow, jaune] DT,)3 NN3

DT; 'NNs JJ,

the vyellow car la voiture jaune

» Translation = parse the input with “half” of the grammar, read off the
other half

» Assumes parallel tree structures, but there can be reordering

Svyntactic MT

Input Output
S S
VP VP
lo hare de muy buen grado . | will do it glaldly
» Use lexicalized rules, look Grammar

like “syntactic phrases”
s = (v .31lvw.) OR s = (VP.j; you VP .)

» Leads to HUGE grammars, v = { loharé ADV 3 will do it ADV)

parsing is slow s = { loharé ADV . 3 | will do it ADV .)

ADV — { de muy buen grado ; gladly)

Slide credit: Dan Klein

