
Decoding	in	Phrase-Based	Machine	
Transla4on	

(Building	the	transla0on)	
Not	required	for	the	homework

Phrase-Based	Decoding

‣ Phrase	table:	set	of	phrase	pairs	(e,	f)	with	probabili4es	P(f|e)

‣ Inputs	needed

‣What	we	want	to	find:	e	produced	by	a	series	of	phrase-by-phrase	
transla4ons	from	an	input	f

‣ Language	model	that	scores	 P (ei|e1, . . . , ei�1) ⇡ P (ei|ei�n�1, . . . , ei�1)

‣ Noisy	channel	model:	P(e|f)	∝	P(f|e)	P(e)																			(ignore	P(f)	term)
Transla4on	
model	(TM)

Language	
model	(LM)

Phrase	LaGce

Koehn	(2004)

‣ Given	an	input	sentence,	look	at	our	phrase	table	to	find	all	possible	
transla4ons	of	all	possible	spans

‣Monotonic	transla4on:	need	to	translate	each	word	in	order,	explore	
paths	in	the	laGce	that	don’t	skip	any	words

‣ Looks	like	Viterbi,	but	the	scoring	is	more	complicated

Monotonic	Transla4on

‣ If	we	translate	with	beam	search,	what	state	do	we	need	to	keep	in	the	
beam?

‣Where	are	we	in	the	sentence

‣What	words	have	we	produced	so	far	(actually	only	need	
to	remember	the	last	2	words	when	using	a	3-gram	LM)

‣ Score

Monotonic	Transla4on

Mary
idx	=	1 -1.1

‣ Beam	state:	where	we’re	at,	what	
the	current	transla4on	so	far	is,	
and	score	of	that	transla4on

…did	not
idx	=	2

Mary	not

Mary	no

-0.1

-1.2

-2.9

idx	=	2

idx	=	2

‣ Advancing	state	consists	of	trying	
each	possible	transla4on	that	
could	get	us	to	this	4mestep

Monotonic	Transla4on

…did	not
idx	=	2

Mary	not

Mary	no

-0.1

-1.2

-2.9

idx	=	2

idx	=	2

score	=	log	[P(Mary)	P(not	|	Mary)	P(Maria	|	Mary)	P(no	|	not)]{ {

LM TM

In	reality:	score	=	α	log	P(LM)	+	β	log	P(TM)
…and	TM	is	broken	down	into	several	features	

Monotonic	Transla4on

‣ Two	ways	to	get	
here:	Maria	+	no	dio	
or	Maria	no	+	dio

‣ Beam	is	filled	with	
op4ons	from	mul4ple	
segmenta.ons	of	input

Monotonic	Transla4on

‣With	beam	size	k	=	
infinity,	how	many	
possible	entries	in	
the	beam	here?

Non-Monotonic	Transla4on

‣More	flexible	model:	can	visit	source	
sentence	“out	of	order”
‣ State	needs	to	describe	which	
words	have	been	translated	
and	which	haven’t

translated:	Maria,	dio,	
una,	bofetada

‣ Big	enough	phrases	already	
capture	lots	of	reorderings,	so	this	
isn’t	as	important	as	you	think

Training	Decoders

‣MERT	(Och	2003):	decode	to	get	1000-
best	transla4ons	for	each	sentence	in	a	
small	training	set	(<1000	sentences),	do	
line	search	on	parameters	to	directly	
op4mize	for	BLEU

score	=	α	log	P(t)	+	β	log	P(s|t)

…and	P(s|t)	is	in	fact	more	complex

‣ Usually	5-20	feature	weights	to	set,	
want	to	op4mize	for	BLEU	score	
which	is	not	differen4able

Moses

‣ Pharaoh	(Koehn,	2004)	is	the	decoder	from	Koehn’s	thesis

‣ Toolkit	for	machine	transla4on	due	to	Philipp	Koehn	+	Hieu	Hoang

‣Moses	implements	word	alignment,	language	models,	and	this	
decoder,	plus	a	ton	more	stuff

‣ Highly	op4mized	and	heavily	engineered,	could	more	or	less	
build	SOTA	transla4on	systems	with	this	from	2007-2013

Moses

slide	credit:	
Dan	Klein

Evalua4ng	MT

Evalua4ng	MT
‣ Fluency:	does	it	sound	good	in	the	target	language?
‣ Fidelity/adequacy:	does	it	capture	the	meaning	of	the	original?

‣ BLEU	score:	geometric	mean	of	1-,	2-,	3-,	and	4-gram	precision	vs.	a	
reference,	mul4plied	by	brevity	penalty	(penalizes	short	transla4ons)

‣ Bemer	metrics:	human-in-the-loop	variants

‣ 1-gram	precision:	do	you	predict	words	that	are	in	the	reference?

‣ 4-gram	precision:	to	get	this	right,	you	need	those	words	to	be	in	the	
right	order!

‣ Automa4c	evalua4on	tries	to	approximate	this…

Syntac4c	MT

Syntac4c	MT
‣ Rather	than	use	phrases,	use	a	synchronous	context-free	grammar

NP	→	[DT1	JJ2	NN3;	DT1	NN3	JJ2]

DT	→	[the,	la]

NN	→	[car,	voiture]

JJ	→	[yellow,	jaune]

the yellow car

‣ Assumes	parallel	tree	structures,	but	there	can	be	reordering

DT	→	[the,	le]

la voiture jaune

NP NP

DT1 NN3 JJ2DT1 NN3JJ2

‣ Transla4on	=	parse	the	input	with	“half”	of	the	grammar,	read	off	the	
other	half

Syntac4c	MT

Slide	credit:	Dan	Klein

‣ Use	lexicalized	rules,	look	
like	“syntac4c	phrases”

‣ Leads	to	HUGE	grammars,	
parsing	is	slow

