
Decoding	in	Phrase-Based	Machine	
Transla4on	

(Building	the	transla0on)	
Not	required	for	the	homework

Phrase-Based	Decoding

‣ Phrase	table:	set	of	phrase	pairs	(e,	f)	with	probabili4es	P(f|e)

‣ Inputs	needed

‣ What	we	want	to	find:	e	produced	by	a	series	of	phrase-by-phrase	
transla4ons	from	an	input	f

‣ Language	model	that	scores	 P (ei|e1, . . . , ei�1) ⇡ P (ei|ei�n�1, . . . , ei�1)

‣ Noisy	channel	model:	P(e|f)	∝	P(f|e)	P(e)																			(ignore	P(f)	term)
Transla4on	
model	(TM)

Language	
model	(LM)

Phrase	LaGce

Koehn	(2004)

‣ Given	an	input	sentence,	look	at	our	phrase	table	to	find	all	possible	
transla4ons	of	all	possible	spans

‣ Monotonic	transla4on:	need	to	translate	each	word	in	order,	explore	
paths	in	the	laGce	that	don’t	skip	any	words

‣ Looks	like	Viterbi,	but	the	scoring	is	more	complicated

Monotonic	Transla4on

‣ If	we	translate	with	beam	search,	what	state	do	we	need	to	keep	in	the	
beam?

‣ Where	are	we	in	the	sentence
‣ What	words	have	we	produced	so	far	(actually	only	need	
to	remember	the	last	2	words	when	using	a	3-gram	LM)

‣ Score

Monotonic	Transla4on

Mary
idx	=	1 -1.1

‣ Beam	state:	where	we’re	at,	what	
the	current	transla4on	so	far	is,	
and	score	of	that	transla4on

…did	not
idx	=	2

Mary	not

Mary	no

-0.1

-1.2

-2.9

idx	=	2

idx	=	2

‣ Advancing	state	consists	of	trying	
each	possible	transla4on	that	
could	get	us	to	this	4mestep

Monotonic	Transla4on

…did	not
idx	=	2

Mary	not

Mary	no

-0.1

-1.2

-2.9

idx	=	2

idx	=	2

score	=	log	[P(Mary)	P(not	|	Mary)	P(Maria	|	Mary)	P(no	|	not)]{ {

LM TM

In	reality:	score	=	α	log	P(LM)	+	β	log	P(TM)
…and	TM	is	broken	down	into	several	features	

Monotonic	Transla4on

‣ Two	ways	to	get	
here:	Maria	+	no	dio	
or	Maria	no	+	dio

‣ Beam	is	filled	with	
op4ons	from	mul4ple	
segmenta.ons	of	input

Monotonic	Transla4on

‣ With	beam	size	k	=	
infinity,	how	many	
possible	entries	in	
the	beam	here?

Non-Monotonic	Transla4on

‣More	flexible	model:	can	visit	source	
sentence	“out	of	order”
‣ State	needs	to	describe	which	
words	have	been	translated	
and	which	haven’t

translated:	Maria,	dio,	
una,	bofetada

‣ Big	enough	phrases	already	
capture	lots	of	reorderings,	so	this	
isn’t	as	important	as	you	think

Training	Decoders

‣ MERT	(Och	2003):	decode	to	get	1000-
best	transla4ons	for	each	sentence	in	a	
small	training	set	(<1000	sentences),	do	
line	search	on	parameters	to	directly	
op4mize	for	BLEU

score	=	α	log	P(t)	+	β	log	P(s|t)

…and	P(s|t)	is	in	fact	more	complex

‣ Usually	5-20	feature	weights	to	set,	
want	to	op4mize	for	BLEU	score	
which	is	not	differen4able

Moses

‣ Pharaoh	(Koehn,	2004)	is	the	decoder	from	Koehn’s	thesis

‣ Toolkit	for	machine	transla4on	due	to	Philipp	Koehn	+	Hieu	Hoang

‣Moses	implements	word	alignment,	language	models,	and	this	
decoder,	plus	a	ton	more	stuff

‣ Highly	op4mized	and	heavily	engineered,	could	more	or	less	
build	SOTA	transla4on	systems	with	this	from	2007-2013

Moses

slide	credit:	
Dan	Klein

Evalua4ng	MT

Evalua4ng	MT
‣ Fluency:	does	it	sound	good	in	the	target	language?
‣ Fidelity/adequacy:	does	it	capture	the	meaning	of	the	original?

‣ BLEU	score:	geometric	mean	of	1-,	2-,	3-,	and	4-gram	precision	vs.	a	
reference,	mul4plied	by	brevity	penalty	(penalizes	short	transla4ons)

‣ Bemer	metrics:	human-in-the-loop	variants

‣ 1-gram	precision:	do	you	predict	words	that	are	in	the	reference?

‣ 4-gram	precision:	to	get	this	right,	you	need	those	words	to	be	in	the	
right	order!

‣ Automa4c	evalua4on	tries	to	approximate	this…

Syntac4c	MT

Syntac4c	MT
‣ Rather	than	use	phrases,	use	a	synchronous	context-free	grammar

NP	→	[DT1	JJ2	NN3;	DT1	NN3	JJ2]

DT	→	[the,	la]

NN	→	[car,	voiture]
JJ	→	[yellow,	jaune]

the yellow car

‣ Assumes	parallel	tree	structures,	but	there	can	be	reordering

DT	→	[the,	le]

la voiture jaune

NP NP

DT1 NN3 JJ2DT1 NN3JJ2

‣ Transla4on	=	parse	the	input	with	“half”	of	the	grammar,	read	off	the	
other	half

Syntac4c	MT

Slide	credit:	Dan	Klein

‣ Use	lexicalized	rules,	look	
like	“syntac4c	phrases”

‣ Leads	to	HUGE	grammars,	
parsing	is	slow

