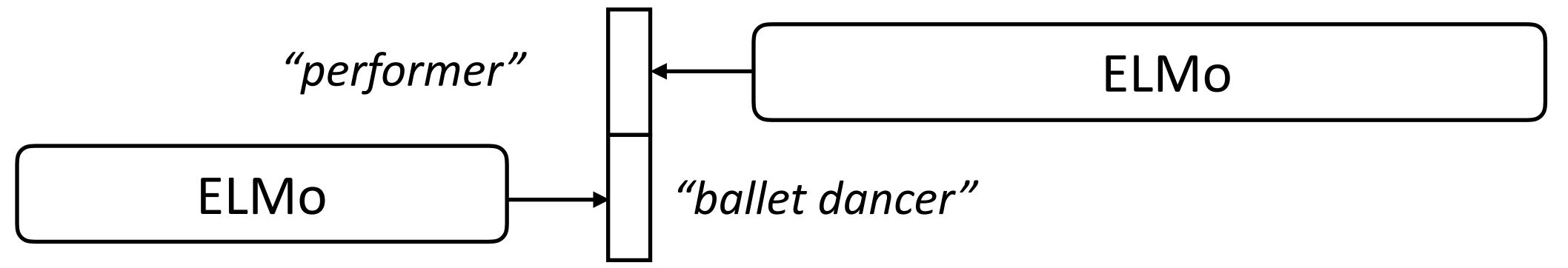


- ▶ AI2 made ELMo in spring 2018, GPT (transformer-based ELMo) was released in summer 2018, BERT came out October 2018
- Four major changes compared to ELMo:
 - ▶ Transformers instead of LSTMs
 - Bidirectional model with "Masked LM" objective instead of standard LM
 - Fine-tune instead of freeze at test time
 - Operates over word pieces (byte pair encoding)

- ▶ ELMo is a unidirectional model (as is GPT): we can concatenate two unidirectional models, but is this the right thing to do?
- ▶ ELMo reprs look at each direction in isolation; BERT looks at them jointly

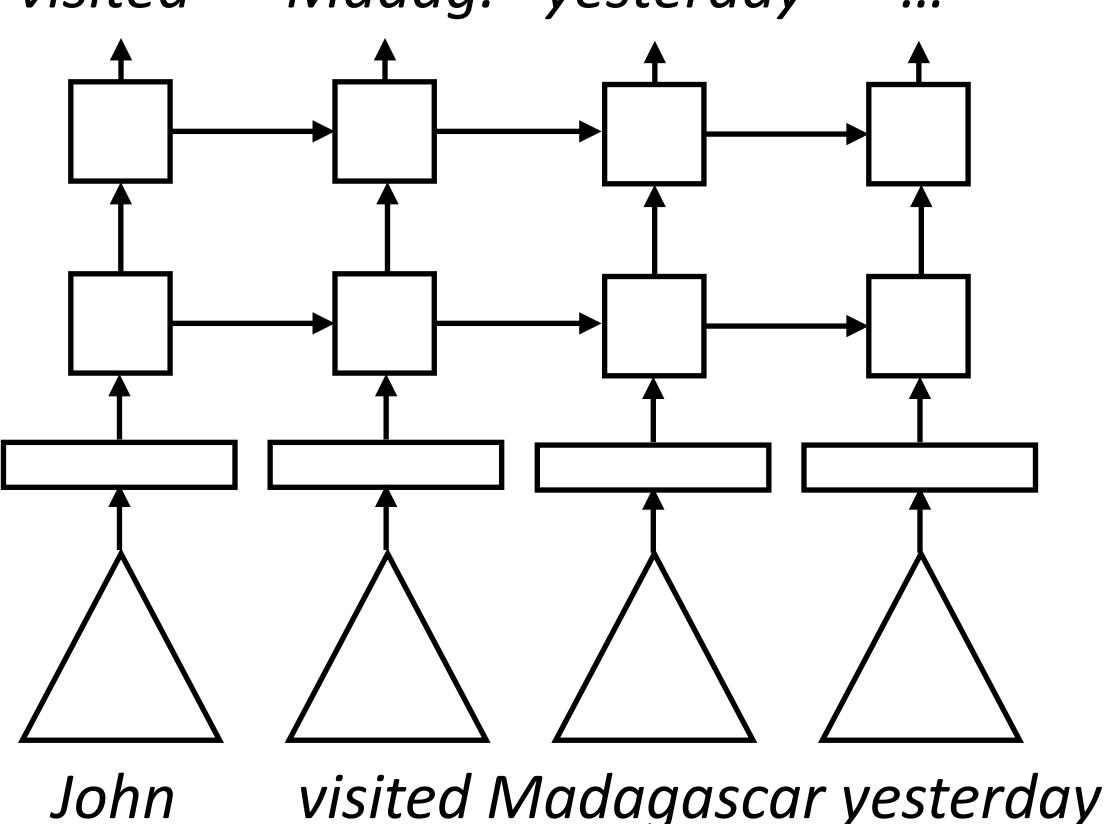


A stunning ballet dancer, Copeland is one of the best performers to see live.

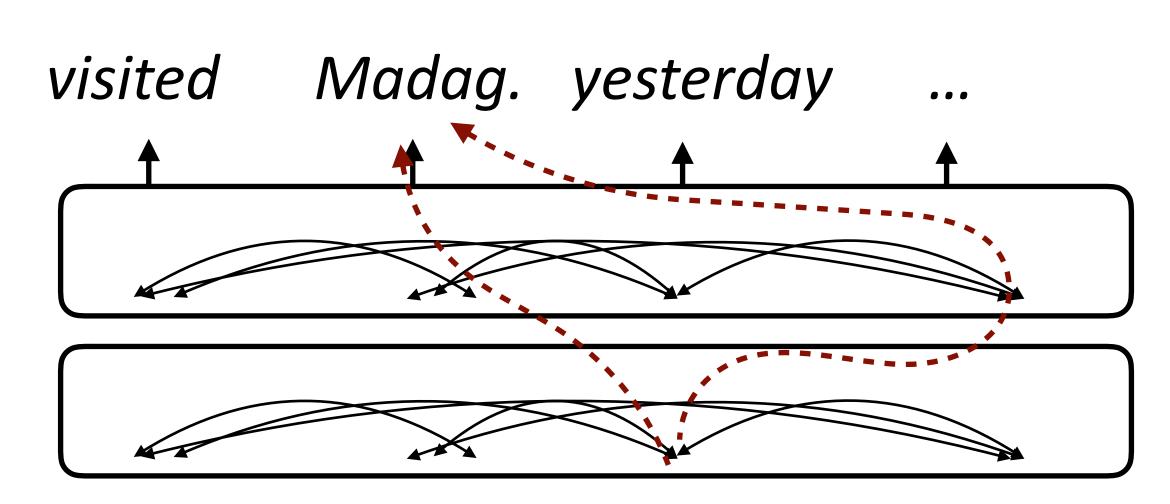
Devlin et al. (2019)

▶ How to learn a "deeply bidirectional" model? What happens if we just replace an LSTM with a transformer?

ELMo (Language Modeling) visited Madag. yesterday ...



BERT

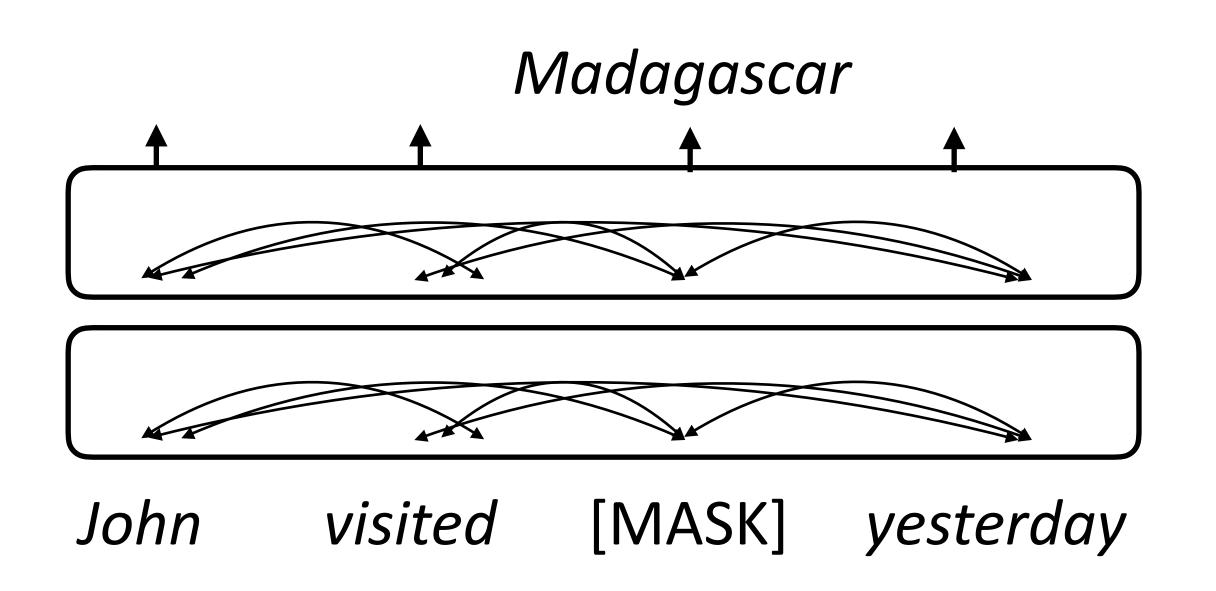


John visited Madagascar yesterday

You could do this with a "onesided" transformer, but this "twosided" model can cheat

Masked Language Modeling

- How to prevent cheating? Next word prediction fundamentally doesn't work for bidirectional models, instead do masked language modeling
- BERT formula: take a chunk of text, mask out 15% of the tokens, and try to predict them



Next "Sentence" Prediction

- Input: [CLS] Text chunk 1 [SEP] Text chunk 2
- ▶ 50% of the time, take the true next chunk of text, 50% of the time take a random other chunk. Predict whether the next chunk is the "true" next
- BERT objective: masked LM + next sentence prediction

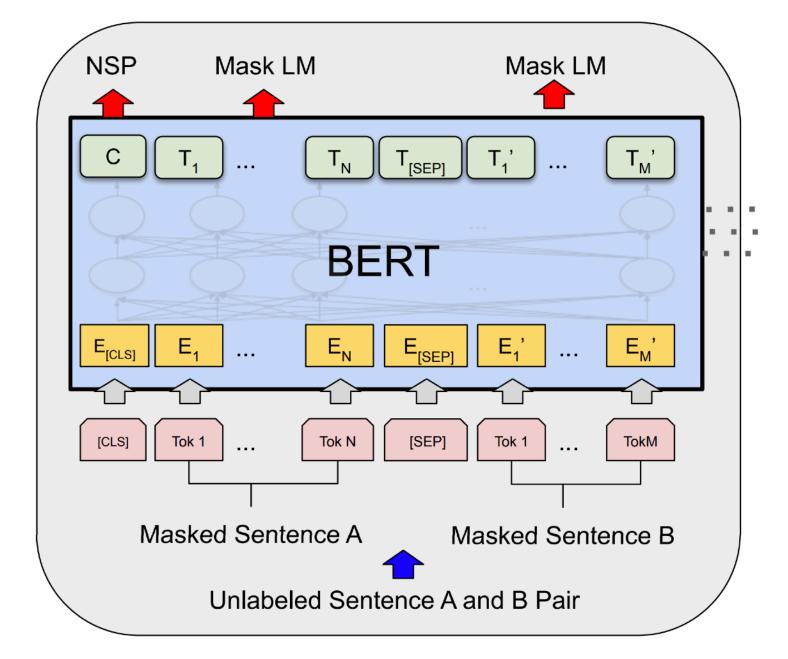


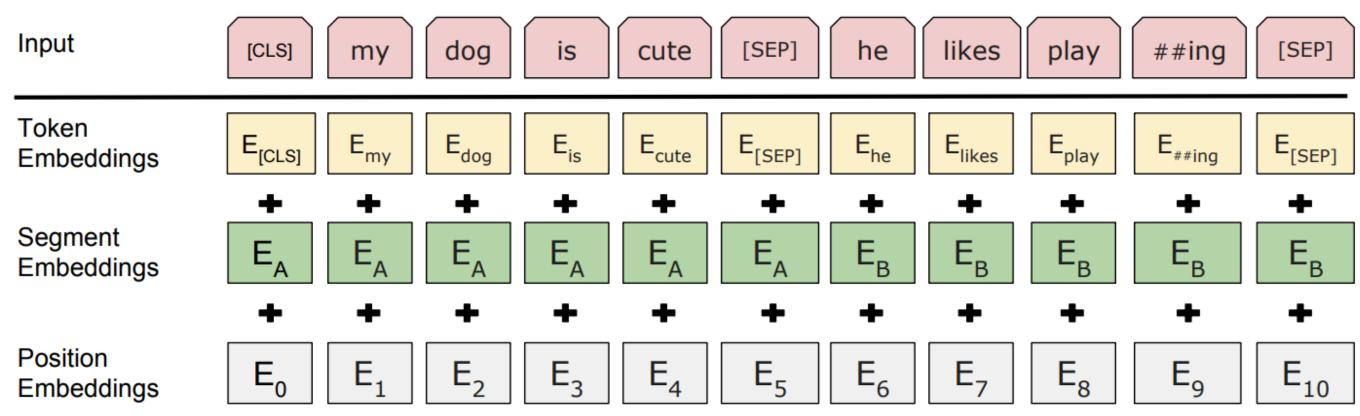
[CLS] John visited [MASK] yesterday and really [MASK] it [SEP] / [MASK] Madonna.

Devlin et al. (2019)

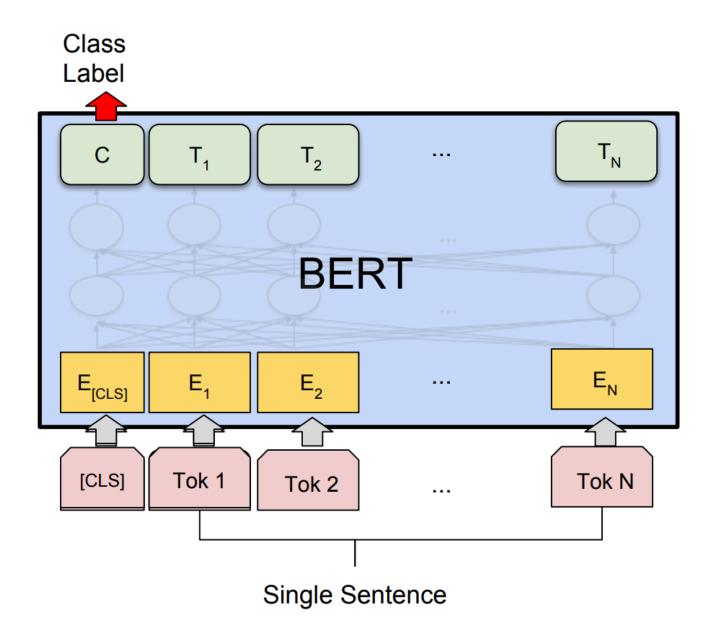
BERT Architecture

- BERT Base: 12 layers, 768-dim per wordpiece token, 12 heads.
 Total params = 110M
- ▶ BERT Large: 24 layers, 1024-dim per wordpiece token, 16 heads.
 Total params = 340M
- Positional embeddings and segment embeddings, 30k word pieces
- This is the model that getspre-trained on a large corpus

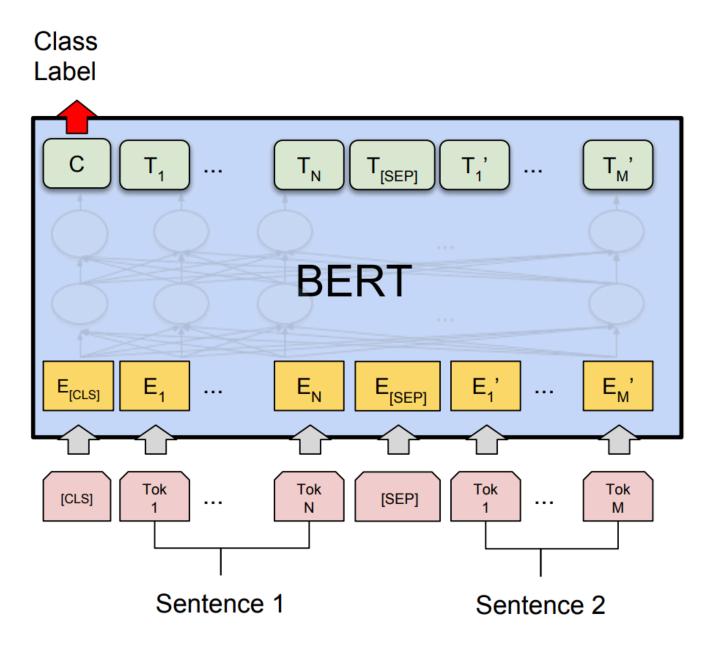




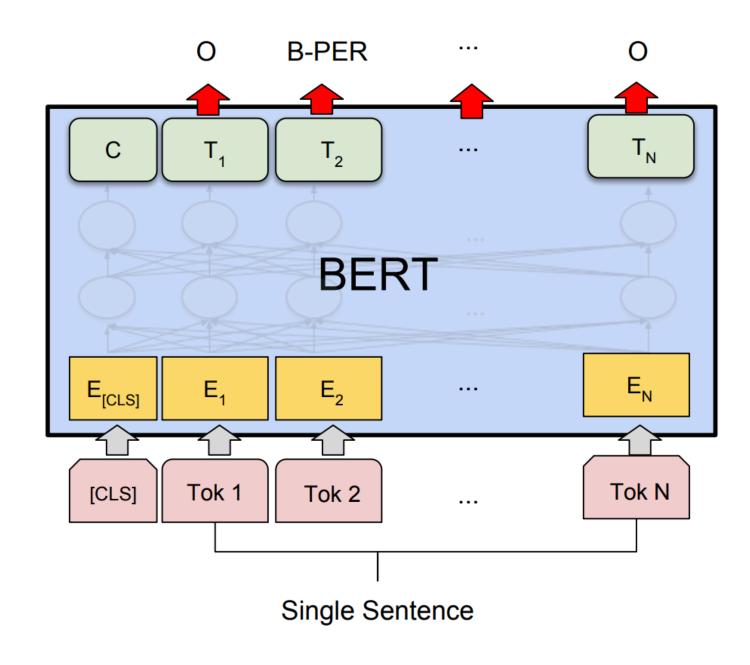
What can BERT do?



(b) Single Sentence Classification Tasks: SST-2, CoLA



(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG



(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

- Artificial [CLS] token is used as the vector to do classification from
- Sentence pair tasks (entailment): feed both sentences into BERT
- ▶ BERT can also do tagging by predicting tags at each word piece Devlin et al. (2019)

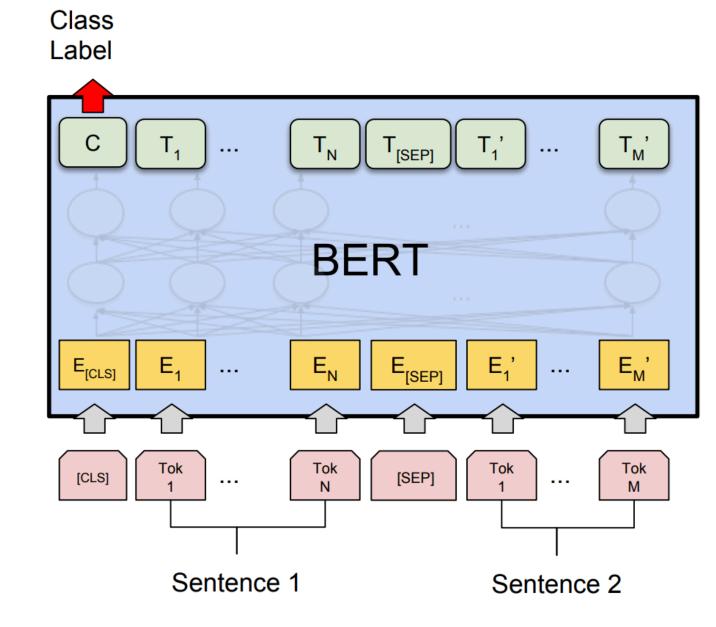
What can BERT do?

Entails (first sentence implies second is true)

Transformer

Transformer

[CLS] A boy plays in the snow [SEP] A boy is outside



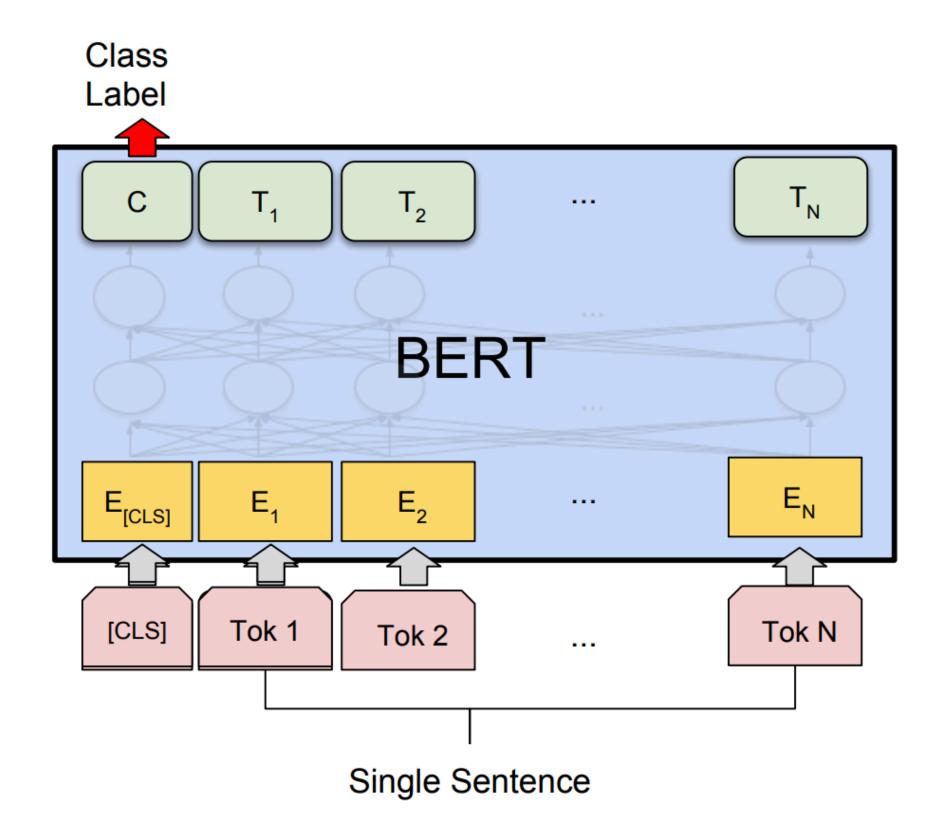
- (a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG
- How does BERT model this sentence pair stuff?
- Transformers can capture interactions between the two sentences, even though the NSP objective doesn't really cause this to happen

What can BERT NOT do?

- BERT cannot generate text (at least not in an obvious way)
 - Can fill in MASK tokens, but can't generate left-to-right (well, you could put MASK at the end repeatedly, but this is slow)
- Masked language models are intended to be used primarily for "analysis" tasks

Fine-tuning BERT

Fine-tune for 1-3 epochs, batch size 2-32, learning rate 2e-5 - 5e-5



(b) Single Sentence Classification Tasks: SST-2, CoLA

- Large changes to weights up here (particularly in last layer to route the right information to [CLS])
- Smaller changes to weights lower down in the transformer
- Small LR and short fine-tuning schedule mean weights don't change much
- More complex "triangular learning rate" schemes exist

Fine-tuning BERT

Pretraining	Adaptation	NER CoNLL 2003	SA SST-2	Nat. lang	g. inference SICK-E	Semantic SICK-R	textual size	milarity STS-B
Skip-thoughts		_	81.8	62.9	_	86.6	75.8	71.8
		91.7	91.8	79.6	86.3	86.1	76.0	75.9
ELMo		91.9	91.2	76.4	83.3	83.3	74.7	75.5
	$\Delta = 0$	0.2	-0.6	-3.2	-3.3	-2.8	-1.3	-0.4
		92.2	93.0	84.6	84.8	86.4	78.1	82.9
BERT-base		92.4	93.5	84.6	85.8	88.7	84.8	87.1
	$\Delta = 0$	0.2	0.5	0.0	1.0	2.3	6.7	4.2

▶ BERT is typically better if the whole network is fine-tuned, unlike ELMo

Evaluation: GLUE

Corpus	Train	Test	Task	Metrics	Domain		
	Single-Sentence Tasks						
CoLA	8.5k	1k	acceptability	Matthews corr.	misc. movie reviews		
SST-2	67k	1.8k	sentiment	sentiment acc.			
	Similarity and Paraphrase Tasks						
MRPC	3.7k	1.7k	paraphrase acc./F1		news		
STS-B	7k	1.4k	sentence similarity Pearson/Spearman corr.		misc.		
QQP	364k	391k	paraphrase	acc./F1	social QA questions		
	Inference Tasks						
MNLI	393k	20k	NLI	matched acc./mismatched acc.	misc.		
QNLI	105k	5.4k	QA/NLI	acc.	Wikipedia		
RTE	2.5k	3k	NLI	acc.	news, Wikipedia		
WNLI	634	146	coreference/NLI	acc.	fiction books		

Results

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	_
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.9	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	88.1	91.3	45.4	80.0	82.3	56.0	75.2
BERT _{BASE}	84.6/83.4	71.2	90.1	93.5	52.1	85.8	88.9	66.4	79.6
BERT _{LARGE}	86.7/85.9	72.1	91.1	94.9	60.5	86.5	89.3	70.1	81.9

- Huge improvements over prior work (even compared to ELMo)
- Effective at "sentence pair" tasks: textual entailment (does sentence A imply sentence B), paraphrase detection

Devlin et al. (2018)

RoBERTa

- "Robustly optimized BERT"
- ▶ 160GB of data instead of 16 GB
- Dynamic masking: standard BERT uses the same MASK scheme for every epoch, RoBERTa recomputes them

Model	data	bsz	steps	SQuAD (v1.1/2.0)	MNLI-m	SST-2
RoBERTa						
with BOOKS + WIKI	16 G B	8K	100 K	93.6/87.3	89.0	95.3
+ additional data (§3.2)	160GB	8K	100K	94.0/87.7	89.3	95.6
+ pretrain longer	160GB	8K	300K	94.4/88.7	90.0	96.1
+ pretrain even longer	160GB	8K	500K	94.6/89.4	90.2	96.4
BERT _{LARGE}						
with BOOKS + WIKI	13 GB	256	1 M	90.9/81.8	86.6	93.7

► New training + more data = better performance

Using BERT

Huggingface Transformers: big open-source library with most pre-trained architectures implemented, weights available

Lots of standard models...

Model architectures

- Transformers currently provides the following NLU/NLG architectures:
- 1. **BERT** (from Google) released with the paper BERT: Pre-training of Deer Understanding by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Krist
- GPT (from OpenAI) released with the paper Improving Language Under Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
- 3. GPT-2 (from OpenAI) released with the paper Language Models are Un Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskev
- 4. Transformer-XL (from Google/CMU) released with the paper Transform Fixed-Length Context by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime
- 5. **XLNet** (from Google/CMU) released with the paper XLNet: Generalized Understanding by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbon
- 6. **XLM** (from Facebook) released together with the paper Cross-lingual Liand Alexis Conneau.
- 7. Roberta (from Facebook), released together with the paper a Robustly

and "community models"

```
mrm8488/spanbert-large-finetuned-tacred
mrm8488/xlm-multi-finetuned-xquadv1
nlpaueb/bert-base-greek-uncased-v1
nlptown/bert-base-multilingual-uncased-sentiment
patrickvonplaten/reformer-crime-and-punish **
redewiedergabe/bert-base-historical-german-rw-cased
roberta-base
severinsimmler/literary-german-bert
seyonec/ChemBERTa-zinc-base-v1
```

 \bullet \bullet

GPT/GPT2

OpenAl GPT/GPT2

- "ELMo with transformers" (works better than ELMo)
- Train a single unidirectional transformer LM on long contexts
- ▶ GPT2: trained on 40GB of text collected from upvoted links from reddit
- ▶ 1.5B parameters by far the largest of these models trained when it came out in March 2019

Parameters	Layers	d_{model}		
117M	12	768		
345M	24	1024		
762M	36	1280		
1542M	48	1600		

▶ Because it's a language model, we can generate from it

OpenAl GPT2

SYSTEM PROMPT (HUMAN-WRITTEN)

Miley Cyrus was caught shoplifting from Abercrombie and Fitch on Hollywood Boulevard today.

MODEL COMPLETION (MACHINE-WRITTEN, SECOND TRY) The 19-year-old singer was caught on camera being escorted out of the store by security guards.

The singer was wearing a black hoodie with the label 'Blurred Lines' on the front and 'Fashion Police' on the back.

Scroll down for video

Shoplifting: Miley Cyrus was caught shoplifting from Abercrombie and Fitch on Hollywood Boulevard today (pictured)

The singer was wearing a black hoodie with the label 'Blurred Lines' on the front and 'Fashion Police' on the back

The singer was also wearing a pair of black-rimmed glasses, a black jacket, black jeans and black sandals.

She was carrying a pair of black and white striped gloves and a small black bag.

slide credit: OpenAl

Open Questions

- 1) How novel is the stuff being generated? (Is it just doing nearest neighbors on a large corpus?)
- 2) How do we understand and distill what is learned in this model?
- 3) How do we harness these priors for conditional generation tasks (summarization, generate a report of a basketball game, etc.)
- 4) Is this technology dangerous? (OpenAI pursued a "staged release" strategy and didn't release biggest model)

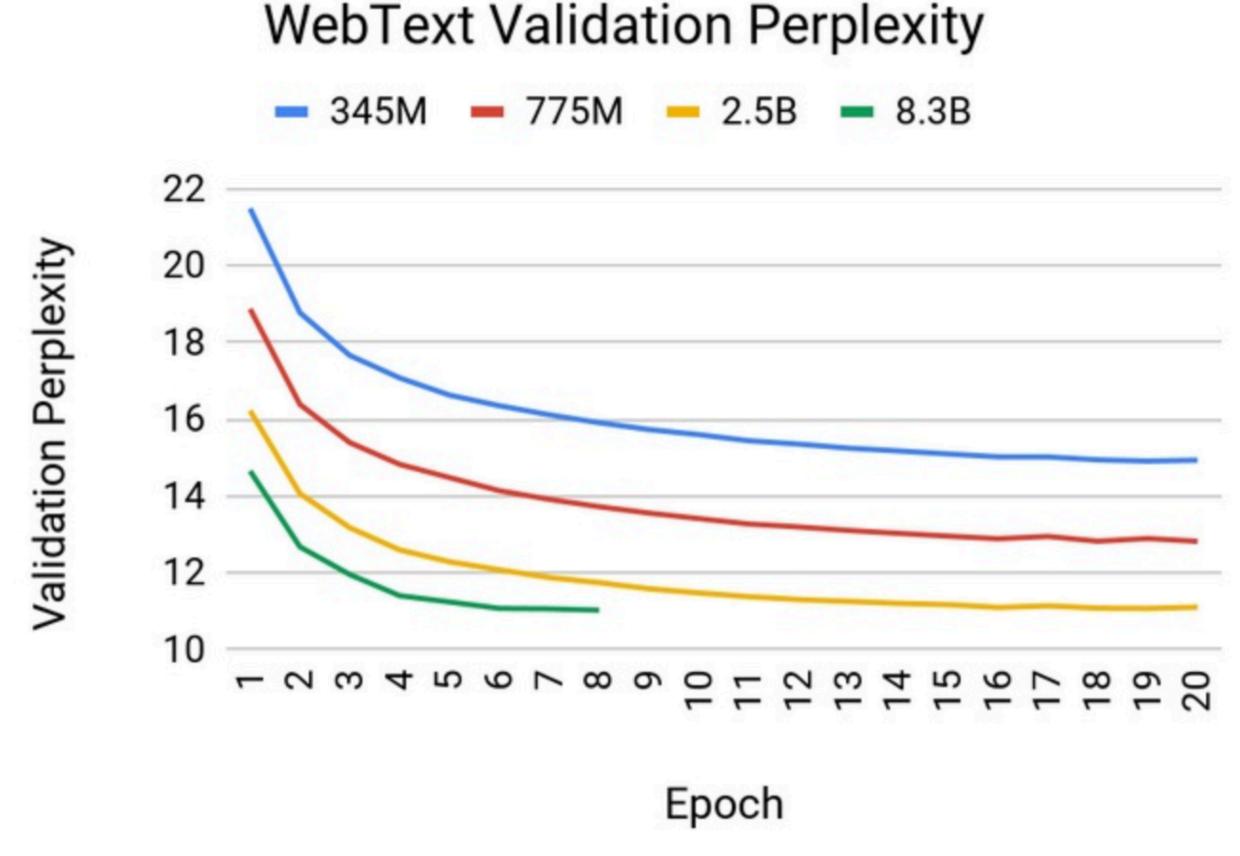
Pre-Training Cost (with Google/AWS)

- BERT: Base \$500, Large \$7000
- Grover-MEGA (GPT-2 variant): \$25,000
- ► XLNet (BERT variant): \$30,000 \$60,000 (unclear)
- This is for a single pre-training run...developing new pre-training techniques may require many runs
- ▶ Fine-tuning these models can typically be done with a single GPU (but may take 1-3 days for medium-sized datasets)

Pushing the Limits

NVIDIA: trained 8.3B parameter GPT model (5.6x the size of GPT-2)

Arguable these models are still underfit: larger models still get better held-out perplexities



NVIDIA blog (Narasimhan, August 2019)