

BERT

- ▶ AI2 made ELMo in spring 2018, GPT (transformer-based ELMo) was released in summer 2018, BERT came out October 2018
- ▶ Four major changes compared to ELMo:
 - ▶ Transformers instead of LSTMs
 - ▶ Bidirectional model with "Masked LM" objective instead of standard LM
 - ▶ Fine-tune instead of freeze at test time
 - Operates over word pieces (byte pair encoding)

Masked Language Modeling

- ▶ How to prevent cheating? Next word prediction fundamentally doesn't work for bidirectional models, instead do masked language modeling
- BERT formula: take a chunk of text, mask out 15% of the tokens, and try to predict them

Devlin et al. (2019)

Next "Sentence" Prediction

- ▶ Input: [CLS] Text chunk 1 [SEP] Text chunk 2
- ▶ 50% of the time, take the true next chunk of text, 50% of the time take a random other chunk. Predict whether the next chunk is the "true" next
- ▶ BERT objective: masked LM + next sentence prediction

[CLS] John visited [MASK] yesterday and really [MASK] it [SEP] / [MASK] Madonna.

Devlin et al. (2019)

BERT Architecture

- BERT Base: 12 layers, 768-dim per wordpiece token, 12 heads. Total params = 110M
- BERT Large: 24 layers, 1024-dim per wordpiece token, 16 heads.Total params = 340M
- Positional embeddings and segment embeddings, 30k word pieces
- ▶ This is the model that gets pre-trained on a large corpus

Devlin et al. (2019)

Class Label CT, T2 TS BERT Single Sentence (b) Single Sentence (b) Single Sentence (c) Single Sentence (d) Sentence (e) Single Sentence (b) Single Sentence

What can BERT do?

- ▶ Artificial [CLS] token is used as the vector to do classification from
- ▶ Sentence pair tasks (entailment): feed both sentences into BERT
- ▶ BERT can also do tagging by predicting tags at each word piece Devlin et al. (2019)

What can BERT NOT do?

- ▶ BERT cannot generate text (at least not in an obvious way)
- ➤ Can fill in MASK tokens, but can't generate left-to-right (well, you could put MASK at the end repeatedly, but this is slow)
- Masked language models are intended to be used primarily for "analysis" tasks

Fine-tuning BERT

Fine-tune for 1-3 epochs, batch size 2-32, learning rate 2e-5 - 5e-5

SST-2, CoLA

- Large changes to weights up here (particularly in last layer to route the right information to [CLS])
- Smaller changes to weights lower down in the transformer
- Small LR and short fine-tuning schedule mean weights don't change much
- More complex "triangular learning rate" schemes exist

Fine-tuning BERT

Pretraining	Adaptation	NER CoNLL 2003	SA Nat. lang. inference SST-2 MNLI SICK-E		Semantic textual similarity SICK-R MRPC STS-B			
Skip-thoughts	*	-	81.8	62.9	-	86.6	75.8	71.8
ELMo	*	91.7	91.8	79.6	86.3	86.1	76.0	75.9
	ĕ	91.9	91.2	76.4	83.3	83.3	74.7	75.5
	$\Delta = 0$ -	0.2	-0.6	-3.2	-3.3	-2.8	-1.3	-0.4
BERT-base	*	92.2	93.0	84.6	84.8	86.4	78.1	82.9
	&	92.4	93.5	84.6	85.8	88.7	84.8	87.1
	Δ=∅-₩	0.2	0.5	0.0	1.0	2.3	6.7	4.2

 $\,\blacktriangleright\,$ BERT is typically better if the whole network is fine-tuned, unlike ELMo

Peters, Ruder, Smith (2019)

Evaluation: GLUE

Corpus	Train	Test	Task	Metrics	Domain		
Single-Sentence Tasks							
CoLA	8.5k	1k	acceptability	Matthews corr.	misc.		
SST-2	67k	1.8k	sentiment	acc.	movie reviews		
Similarity and Paraphrase Tasks							
MRPC	3.7k	1.7k	paraphrase	acc./F1	news		
STS-B	7k	1.4k	sentence similarity Pearson/Spearman corr.		misc.		
QQP	364k	391k	paraphrase	acc./F1	social QA questions		
			Infere	ence Tasks			
MNLI	393k	20k	NLI	matched acc./mismatched acc.	misc.		
QNLI	105k	5.4k	QA/NLI	acc.	Wikipedia		
RTE	2.5k	3k	NLI	acc.	news, Wikipedia		
WNLI	634	146	coreference/NLI	acc.	fiction books		

Wang et al. (2019)

Results

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.9	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	88.1	91.3	45.4	80.0	82.3	56.0	75.2
BERTBASE	84.6/83.4	71.2	90.1	93.5	52.1	85.8	88.9	66.4	79.6
$BERT_{LARGE}$	86.7/85.9	72.1	91.1	94.9	60.5	86.5	89.3	70.1	81.9

- ▶ Huge improvements over prior work (even compared to ELMo)
- ▶ Effective at "sentence pair" tasks: textual entailment (does sentence A imply sentence B), paraphrase detection

Devlin et al. (2018)

RoBERTa

- ▶ "Robustly optimized BERT"
- ▶ 160GB of data instead of 16 GB
- Dynamic masking: standard BERT uses the same MASK scheme for every epoch, RoBERTa recomputes them
- SQuAD Model MNLI-m SST-2 (v1.1/2.0) RoBERTa with BOOKS + WIKI 16GB 8K 100K 93.6/87.3 89.0 95.3 + additional data (§3.2) 160GB 8K 100K 94.0/87.7 89.3 95.6 + pretrain longer 160GB 8K 300K 94.4/88.7 90.0 96.1 + pretrain even longer 160GB 8K 500K 94.6/89.4 96.4 BERT with BOOKS + WIKI 13GB 256 1M 90.9/81.8 93.7

▶ New training + more data = better performance

Liu et al. (2019)

Using BERT

- ▶ Huggingface Transformers: big open-source library with most pre-trained architectures implemented, weights available
- ▶ Lots of standard models...

Model architectures

and Alexis Conneau.

- Pransformers currently provides the following NLU/NLG architectures:
- BERT (from Google) released with the paper BERT: Pre-training of Deep Understanding by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Krist
 GPT (from OpenAl) released with the paper Improving Language Under
- Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.

 3. GPT-2 (from OpenAl) released with the paper Language Models are Un Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskev
- 4. Transformer-XL (from Google/CMU) released with the paper Transform Fixed-Length Context by Zihang Dai*, Zhillin Yang*, Yiming Yang, Jaime
- XLNet (from Google/CMU) released with the paper XLNet: Generalized Understanding by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbon 6. XLM (from Facebook) released together with the paper Cross-lingual Li
- 7. RoBERTa (from Facebook), released together with the paper a Robusti

• • • •

and "community models"

mrm8488/spanbert-large-finetuned-tacred mrm8488/xlm-multi-finetuned-xquadvl

nlpaueb/bert-base-greek-uncased-v1 🕏

nlptown/bert-base-multilingual-uncased-sentiment
patrickvonplaten/reformer-crime-and-punish

redewiedergabe/bert-base-historical-german-rw-cased

roberta-base *

severinsimmler/literary-german-bert

seyonec/ChemBERTa-zinc-base-v1

GPT/GPT2

OpenAl GPT/GPT2

- "ELMo with transformers" (works better than ELMo)
- ▶ Train a single unidirectional transformer LM on long contexts
- ▶ GPT2: trained on 40GB of text collected from upvoted links from reddit
- ▶ 1.5B parameters by far the largest of these models trained when it came out in March 2019

Parameters	Layers	d_{model}
117 M	12	768
345M	24	1024
762M	36	1280
1542M	48	1600

▶ Because it's a language model, we can **generate** from it

Radford et al. (2019)

OpenAl GPT2

SYSTEM PROMPT Miley Cyrus was caught shoplifting from Abercrombie and Fitch on (HUMAN-WRITTEN) Hollywood Boulevard today.

DDELCOMPLETION The 19-year-old singer was caught on camera being escorted out of ACHINE-WRITTEN. the store by security guards

The singer was wearing a black hoodie with the label 'Blurred Lines' on the front and 'Fashion Police' on the back.

Scroll down for video

Shoplifting: Miley Cyrus was caught shoplifting from Abercrombie and Fitch on Hollywood Boulevard today (pictured)

The singer was wearing a black hoodie with the label 'Blurred Lines' on the front and 'Fashion Police' on the back

She was carrying a pair of black and white striped gloves and a small black bag.

slide credit: OpenAl

Open Questions

- 1) How novel is the stuff being generated? (Is it just doing nearest neighbors on a large corpus?)
- 2) How do we understand and distill what is learned in this model?
- 3) How do we harness these priors for conditional generation tasks (summarization, generate a report of a basketball game, etc.)
- 4) Is this technology dangerous? (OpenAI pursued a "staged release" strategy and didn't release biggest model)

Pre-Training Cost (with Google/AWS)

- ▶ BERT: Base \$500, Large \$7000
- ▶ Grover-MEGA (GPT-2 variant): \$25,000
- ▶ XLNet (BERT variant): \$30,000 \$60,000 (unclear)
- ► This is for a single pre-training run...developing new pre-training techniques may require many runs
- Fine-tuning these models can typically be done with a single GPU (but may take 1-3 days for medium-sized datasets)

https://syncedreview.com/2019/06/27/the-staggering-cost-of-training-sota-ai-models/

