Sentiment Analysis

Sentiment Analysis

this movie was great! would watch again

the movie was gross and overwrought, but I liked it

this movie was not really very enjoyable

- ▶ Bag-of-words doesn't seem sufficient (discourse structure, negation)
- ▶ There are some ways around this: extract bigram feature for "not X" for all X following the not

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)

Pang et al. (2002)

	Features	# of	frequency or	NB	ME	SVM
		features	presence?			
(1)	unigrams	16165	freq.	78.7	N/A	72.8
(2)	unigrams	"	pres.	81.0	80.4	82.9
(3)	unigrams+bigrams	32330	pres.	80.6	80.8	82.7
(4)	bigrams	16165	pres.	77.3	77.4	77.1
(5)	unigrams+POS	16695	pres.	81.5	80.4	81.9
(6)	adjectives	2633	pres.	77.0	77.7	75.1
(7)	top 2633 unigrams	2633	pres.	80.3	81.0	81.4
(8)	unigrams+position	22430	pres.	81.0	80.1	81.6

- ▶ Simple feature sets can do pretty well!
- Learning alg. doesn't matter too much
- ▶ ME = "Maximum Entropy" = what we call Logistic Regression

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)

Wang and Manning (2012)

▶ 10 years later - revisited basic BoW classifiers vs. other methods

RT-s	MPQA	
77.9	85.3	_
79.0	86.3	
76.2	86.1	
77.7	<u>86.7</u>	
78.1	85.3	
<u>79.4</u>	86.3	
76.8	85.7	_
77.7	86.4	K
63.1	81.7	_
62.9	81.8	
75.7	81.8	
76.4	84.1	
77.3	86.1	
	77.9 79.0 76.2 77.7 78.1 79.4 76.8 77.7 63.1 62.9 75.7 76.4	77.9 85.3 79.0 86.3 76.2 86.1 77.7 86.7 78.1 85.3 79.4 86.3 76.8 85.7 77.7 86.4 63.1 81.7 62.9 81.8 75.7 81.8 76.4 84.1

Before neural nets had taken off — results weren't that great

Kim (2014) CNNs 81.5 89.5

Wang and Manning (2012)