Neural Net Basics

-
[‘—‘1'._. Y .
-' ’l .::': .

MY CPU IS A NEURALPNET PROCESSOR.
A LEARNING COMPUTER.

Neural Networks

z=g(Vf(x)+Db)
Nonli 4 \W f
onlinear arp .

transformation space Shift

Ypred = argmax, w, Z

» lgnore shift / +b term for the
rest of the course

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Neural Networks

Linear classification
Linear classifier Neural network in the transformed

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Deep Neural Networks

71 — Q(Vlf(X))
79 — Q(szl)

- T
Ypred = argmax, W, Z

AAAAAAAAAAAAAA

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Feedforward Networks

Vectorization and Softmax

exp(w, X)
P(y|x) = — » Single scalar probability
D, €XP(W,,X) .
- S
W, X -1.1 & 0.036
» Three classes, - B v 0.89 class
“different weights” "2 T = | probs
W;_X -0.4 0.07

» Softmax operation = “exponentiate and normalize”

» We write this as: softmax(IVx)

Logistic Regression with NNs

p _ eXp(W;X) » Single scalar probability
(y|X) o T

Zy’ eXp<Wy’X)
P(y|x) = softmax(W f(x)) » Weight vector per class;

W is [num classes x num feats]

P(y|x) = softmax(Wg(V f(x))) » Now one hidden layer

Neural Networks for Classification

P(y|x) = softmax(Wgqg(V f(x)))
num classes
d hidden units probs

H
g

d X n matrix nonlinearity = num classes x d
n features (tanh, relu, ...) matrix

Backpropagation
(we'll go quickly — derivations at
end of slides)

Training Neural Networks

P(y|x) = softmax(Wz) z = g(V f(x))

» Maximize log likelihood of training data

L(x,7") =log P(y = 1"|x) = log (softmax(Wz) - ¢;«)
» i*: index of the gold label

» ei: 1in the ith row, zero elsewhere. Dot by this = select ith index

L(x,7") =Wz-e; — log Z exp(Wz) - e,

J

Backpropagation: Picture

P(y|x) = softmax(Wgqg(V f(x)))
num classes
d hidden units probs

7 H
g OL
Z oW
n features

» Gradient w.r.t. W: looks like logistic
regression, can be computed treating z
as the features

Backpropagation: Picture

P(y|x) = softmax(Wgqg(V f(x)))

err(z)

» Can forget everything after z, treat
it as the output and keep backpropping

Computing Gradients: Backpropagation

L(x,17)=Wz-e; — logZexp Wz)-e;, %= g(V f(x))
j Activations at
hidden layer

» Gradient with respect to V: apply the chain rule

OL(x, i Oz _|99(a)|da |, _ yr(x)
8‘/;] 8‘/;] B oa 8‘/”

» First term: err(z); represents gradient w.r.t. z

» First term: gradient of nonlinear activation function at a (depends on
current value)

» Second term: gradient of linear function

Backpropagation: Picture

P(y|x) = softmax(Wgqg(V f(x)))
num classes
d hidden units probs

H . —

€7°7°

» Combine backward gradients with forward-pass products

Neural Nets History

History: NN “dark ages”

» Convnets: applied to MNIST by LeCun in 1998

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

INPUT
3932 6@28x28 S2: f ma OUTPUT
6@14x oy I— er
— 10
N
‘ FuII conAectuon ‘ Gau35|an connections
Convolutions Subsampling Convolutions Subsampllng Full connection net_

9

scj=scj+ g yi"j

» LSTMs: Hochreiter and Schmidhuber (1997) D

ol

h h youtj
o—>)>0)—e

W

v @net v’ @net

wii /N i 7N

» Henderson (2003): neural shift-reduce parser, not SOTA

2008-2013: A glimmer of light...

» Collobert and Weston 2011: “NLP (almost) from scratch”

» Feedforward neural nets induce features for
sequential CRFs (“neural CRF”)

» Krizhevskey et al. (2012): AlexNet for vision o
© o P2 = 8(a,p1)

» Socher 2011-2014: tree-structured RNNs working o> p1=g(b,c)

okay O © ©

GO @O QO
. not very good ...

a b C

2014: Stuft starts working

» Kim (2014) + Kalchbrenner et al. (2014): sentence classification / sentiment
(convnets work for NLP?)

» Sutskever et al. (2014) + Bahdanau et al. (2014): seq2seq for neural MT
(LSTMs work for NLP?)

» Chen and Manning transition-based dependency parser (feedforward)

» 2015: explosion of neural nets for everything under the sun

Why didn’t they work before?

» Datasets too small: for MT, not really better until you have 1M+ parallel
sentences (and really need a lot more)

» Optimization not well understood: good initialization, per-feature scaling
+ momentum (Adagrad / Adadelta / Adam) work best out-of-the-box

» Regularization: dropout is pretty helpful

» Computers not big enough: can’t run for enough iterations

» Inputs: need word representations to have the right continuous semantics

Next Time

» More implementation details: practical training techniques

» Word representations / word vectors

» word2vec, GloVe

Backpropagation — Derivations
(not covered in lecture, optional but
useful for Assignment 2)

Computing Gradients

L(x,2") =Wz-e; — log Z exp(Wz) - e,

J gradient w.r.t. W
» Gradient with respect to W: J
z; — Ply=1|x)z; ifj=j* /
0 £(x.i") = J J
OWi; —P(y =1|x)z; otherwise

» Looks like logistic regression with z as the features!

Computing Gradients: Backpropagation

L(x,17)=Wz-e; —log Z exp(Wz)-e; 27 g(V f(x))

5 Activations at

hidden layer

» Gradient with respect to V: apply the chain rule

OL(x,1*) |0L(x,1")| Oz
8‘/;']' N 6Z 6"/@
w‘e math...]

err(root) = e;« — P(y|x) OL(x, 7"
dim = num classes

Computing Gradients: Backpropagation

L(x,17)=Wz-e; — logZexp Wz)-e;, %= g(V f(x))
j Activations at
hidden layer

» Gradient with respect to V: apply the chain rule

OL(x, i Oz _|99(a)|da |, _ yr(x)
8‘/;] 8‘/;] B oa 8‘/”

» First term: gradient of nonlinear activation function at a (depends on
current value)

» Second term: gradient of linear function

» First term: err(z); represents gradient w.r.t. z

Backpropagation

P(y|x) = softmax(Wgqg(V f(x)))
» Step 1: compute err(root) = e;« — P(y|x) (vector)

» Step 2: compute derivatives of W using err(root) (matrix)

0L(x,1")
0z
» Step 4: compute derivatives of V using err(z) (matrix)

» Step 3: compute

=err(z) =W err(root) (vector)

» Step 5+: continue backpropagation if necessary

» See optimization.py in the homework to understand this more

