Neural Net Basics

MY CPU IS A NEURAL™NET PROCESSOR.
A LEARNING COMPUTER.

Neural Networks

z = g(Vf(x)+b) ‘

Nonli 4 \W !
onlinear arp .
transformation space Shift
T
Ypred = argmax, w, z

05

» Ignore shift / +b term for the

rest of the course

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Neural Networks

Linear classification
in the transformed
space!

Linear classifier Neural network

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Deep Neural Networks

z1 = g(V1f(x))
Zy = g(V2Z1)

T
Ypred = argmax, w, zn

A

o5 o

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Feedforward Networks

Vectorization and Softmax

exp(w, X)
P(ylx) = - » Single scalar probability
3. exp(w,,x)
Y Yy 3
- £
Wi X -11 %‘ 0.036
» Three classes, T “ 0.89 class
“different weights” W2 X = 2.1 ' probs
w;x -0.4 0.07

» Softmax operation = “exponentiate and normalize”

» We write this as: softmax(Wx)

Logistic Regression with NNs

. eXP(W;,rX) » Single scalar probability
P(ylx) = ﬁ
Y’ eXp(Wy/X
P(y|x) = softmax(W f(x)) » Weight vector per class;
W is [num classes x num feats]
P(y|x) = softmax(Wg(V f(x))) » Now one hidden layer

Neural Networks for Classification

P(y|x) = softmax(Wg(V f(x)))

num_classes

— d hidden units probs

. "

v HC T w2
g

| dxnmatrix nonlinearity num_classes x d

n features (tanh, relu, ...) matrix

Backpropagation
(we’ll go quickly — derivations at
end of slides)

Training Neural Networks

P(y|x) = softmax(Wz) z=g(Vf(x))

» Maximize log likelihood of training data

L(x,i") =log P(y = i"|x) = log (softmax(Wz) - ;)
» i*: index of the gold label

» ei: 1in the ith row, zero elsewhere. Dot by this = select ith index

L(x,i") =Wz e; — logz exp(Wz) - e;
J

Backpropagation: Picture

P(y|x) = softmax(Wg(V f(x)))

num_classes

] d hidden units probs
7 "
B v M e W I—
g
Z

n features » Gradient w.r.t. W: Iooks like logistic

regression, can be computed treating z
as the features

Backpropagation: Picture

P(y|x) = softmax(Wg(V f(x)))

& v rL_F

g

Z
err(z)
w
» Can forget everything after z, treat
it as the output and keep backpropping

Computing Gradients: Backpropagation

L(x,i") =Wz-e; —log Z exp(Wz)-e; 2=9(VF(Xx)
j Activations at
» Gradient with respect to V: apply the chain rule hidden layer
OL(x,1*) _ 0L(x,1*)| 0z 0z _ dg(a)| 0a a=Vf(x)
Vi, 0z |0V, oVij da [0V

» First term: err(z); represents gradient w.r.t. z
» First term: gradient of nonlinear activation function at a (depends on

current value)
» Second term: gradient of linear function

Backpropagation: Picture

P(y[x) = softmax(Wg(V f(x)))

num_classes

] d hidden units probs
™ "
g
Z
W oz err(z)

n features v

» Combine backward gradients with forward-pass products

Neural Nets History

History: NN “dark ages”

» Convnets: applied to MNIST by LeCun in 1998

C3:1. maps 16@10x10
S4:

~ |9 h
» LSTMs: Hochreiter and Schmidhuber (1997) =19 @9 9@9@% §

» Henderson (2003): neural shift-reduce parser, not SOTA

2008-2013: A glimmer of light...

» Collobert and Weston 2011: “NLP (almost) from scratch”

» Feedforward neural nets induce features for
sequential CRFs (“neural CRF”)

» Krizhevskey et al. (2012): AlexNet for vision
©o P2 = 8(a,p1)

» Socher 2011-2014: tree-structured RNNs working
okay

<o p1=g(b,c)

©®» QOO
. not very good..
a b c

2014: Stuff starts working

» Kim (2014) + Kalchbrenner et al. (2014): sentence classification / sentiment
(convnets work for NLP?)

» Sutskever et al. (2014) + Bahdanau et al. (2014): seq2seq for neural MT
(LSTMs work for NLP?)

» Chen and Manning transition-based dependency parser (feedforward)

» 2015: explosion of neural nets for everything under the sun

Why didn’t they work before?

» Datasets too small: for MT, not really better until you have 1M+ parallel
sentences (and really need a lot more)

» Optimization not well understood: good initialization, per-feature scaling
+ momentum (Adagrad / Adadelta / Adam) work best out-of-the-box

» Regularization: dropout is pretty helpful

» Computers not big enough: can’t run for enough iterations

» Inputs: need word representations to have the right continuous semantics

Next Time

» More implementation details: practical training techniques

» Word representations / word vectors

» word2vec, GloVe

Backpropagation — Derivations
(not covered in lecture, optional but
useful for Assignment 2)

Computing Gradients

L(x,i*) =Wz-e;» — logz exp(Wz) - e;

J gradient w.r.t. W
» Gradient with respect to W: Ji
o i) z; — P(y =ilx)z; ifj=* i
X1)= z; — Py = i|x)z;
OWij —P(y =1i|x)z; otherwise kit
—P(y = i[x)z;

» Looks like logistic regression with z as the features!

Computing Gradients: Backpropagation

L(x,i*) = Wz-e; —log Yy exp(Wz)-¢; 2= 9V/x)
: Activations at
hidden layer

J

» Gradient with respect to V: apply the chain rule
0L(x,4") |0L(x,i")| Oz

Vi, oz |0V,

w‘e math...]

err(root) = e+ — P(y|x) OLLx, ") = err(z) = W err(root)
dim = num_classes Oz dim=d

Computing Gradients: Backpropagation

L(x,i*) = Wz-e; —log Y exp(Wz)-¢; 2=9V/x)
: Activations at
hidden layer

J

» Gradient with respect to V: apply the chain rule

0L(x,i*) |0L(x,i")| Oz 0z |0g(a)| da a=Vfx)

oV Oa |0V,

Vi, 0z |0V,

» First term: gradient of nonlinear activation function at a (depends on
current value)
» Second term: gradient of linear function

» First term: err(z); represents gradient w.r.t. z

Backpropagation

P(y|x) = softmax(Wg(V f(x)))
» Step 1: compute err(root) = e;+ — P(y|x) (vector)

» Step 2: compute derivatives of W using err(root) (matrix)

OL(x,1%)
0z
» Step 4: compute derivatives of V using err(z) (matrix)

» Step 3: compute = err(z) = W' err(root) (vector)

» Step 5+: continue backpropagation if necessary

» See optimization.py in the homework to understand this more

