
CS388:	Natural	Language	Processing

Greg	Durre8

Lecture	6:	NN	
Implementa=on

Announcements

‣ A1	due	today	at	midnight

‣ A2	out	at	midnight

Recall:	Feedforward	NNs

V

n	features

d	hidden	units

d	x	n	matrix num_classes	x	d	
matrix

soImaxWf
(x
)

z

nonlinearity 
(tanh,	relu,	…)

g P
(y

|x
)

P (y|x) = softmax(Wg(V f(x)))
num_classes	
probs

Recall:	Training	Feedforward	NNs

P (y|x) = softmax(Wg(V f(x)))

‣Maximize	log	likelihood	of	training	data.	For	one	point:

L(x, i⇤) = logP (y = i⇤|x) = log (softmax(Wz) · ei⇤)

‣ How	to	compute	the	gradient	with	respect	to	W	and	V?

Recall:	Backpropaga=on

V

d	hidden	units

soImaxWf
(x
)

z
g P

(y
|x
)

P (y|x) = softmax(Wg(V f(x)))

@L
@W err(root)@z

@V
err(z)

zf(x)

This	Lecture

‣ Neural	net	implementa=on	/	PyTorch	101

‣ Deep	averaging	networks

‣ Neural	net	training	=ps

Implemen=ng	Neural	Networks:	
PyTorch	101

Computa=on	Graphs

‣ Compu=ng	gradients	is	hard!

‣ Automa=c	differen=a=on:	instrument	code	to	keep	track	of	deriva=ves

y = x * x (y,dy) = (x * x, 2 * x * dx)
codegen

‣ Computa=on	is	now	something	we	need	to	reason	about	symbolically;	
use	a	library	like	PyTorch	(or	Tensorflow)

‣Ensuing	code	examples	are	on	the	course	website:	ffnn_example.py	
under	“Readings”

PyTorch

‣ Framework	for	defining	computa=ons	that	provides	easy	access	to	
deriva=ves

torch.nn.Module‣ Module:	defines	a	neural	
network	(can	use	wrap	
other	modules	which	
implement	predefined	
layers)

forward(x):
#	Takes	an	example	x	and	computes	result

backward():	#	produced	automa=cally
#	Computes	gradient	aIer	forward()	is	called

…

…

‣ If	forward()	uses	crazy	
stuff,	you	have	to	write	
backward	yourself

Computa=on	Graphs	in	Pytorch

P (y|x) = softmax(Wg(V f(x)))

class FFNN(nn.Module):
 def __init__(self, input_size, hidden_size, out_size):
 super(FFNN, self).__init__()
 self.V = nn.Linear(input_size, hidden_size)
 self.g = nn.Tanh() # or nn.ReLU(), sigmoid()...
 self.W = nn.Linear(hidden_size, out_size)
 self.softmax = nn.Softmax(dim=0)

‣ Define	forward	pass	for

 def forward(self, x):
 return self.softmax(self.W(self.g(self.V(x))))

(syntac=c	sugar	for	forward)

Input	to	Network

‣ Whatever	you	define	with	torch.nn	needs	its	input	as	some	sort	of	
tensor,	whether	it’s	integer	word	indices	or	real-valued	vectors

def form_input(x) -> torch.Tensor:
 # Index words/embed words/etc.
 return torch.from_numpy(x).float()

‣ torch.Tensor	is	a	different	datastructure	from	a	numpy	array,	but	you	can	
translate	back	and	forth	fairly	easily

‣ Note	that	transla>ng	out	of	PyTorch	will	break	backpropaga>on;	don’t	
do	this	inside	your	Module

Training	and	Op=miza=on

P (y|x) = softmax(Wg(V f(x)))

ffnn = FFNN(inp, hid, out)

loss.backward()

probs = ffnn.forward(input)
loss = torch.neg(torch.log(probs)).dot(gold_label)

optimizer.step()

for (input, gold_label) in training_data:
ffnn.zero_grad() # clear gradient variables

one-hot	vector 
of	the	label  
(e.g.,	[0,	1,	0])

optimizer = optim.Adam(ffnn.parameters(), lr=lr)

nega=ve	log-likelihood	of	correct	answer

for epoch in range(0, num_epochs):

Ini=aliza=on	in	Pytorch

class FFNN(nn.Module):
 def __init__(self, inp, hid, out):
 super(FFNN, self).__init__()
 self.V = nn.Linear(inp, hid)
 self.g = nn.Tanh()
 self.W = nn.Linear(hid, out)
 self.softmax = nn.Softmax(dim=0)  

‣ Ini=alizing	to	a	nonzero	value	is	cri=cal,	more	in	a	bit

nn.init.uniform(self.V.weight)

Training	a	Model
Define	modules,	etc.

For	each	epoch:

Compute	loss	on	batch

For	each	batch	of	data:

Run	on	dev/test	set

Autograd	to	compute	gradients	and	take	step	on	op=mizer

Zero	out	gradient

Ini=alize	weights	and	op=mizer

[Op=onal:	check	performance	on	dev	set	to	iden=fy	overfigng]

Batching	and	Op=miza=on  
(blackboard)

Batching
‣ Batching:	processing	mul=ple	examples	in	parallel	(for	training	or	test),	
gives	speedups	due	to	more	efficient	matrix	opera=ons

‣ Need	to	make	the	computa=on	graph	process	a	batch	at	the	same	=me

probs = ffnn.forward(input) # [batch_size, num_classes]
loss = torch.sum(torch.neg(torch.log(probs)).dot(gold_label))

...

‣ Batch	sizes	range	from	1-64	or	so	(depending	on	GPU	memory,	etc.)

def make_update(input, gold_label)

input is [batch_size, num_feats]  
gold_label is [batch_size, num_classes]

...

Op=miza=on	Takeaways

‣ Can	do	random	uniform	/	normal	ini=aliza=on	with	appropriate	scale;	
also	fancier	ini=alizers	(Xavier	Glorot	ini=alizer,	Kaiming	He)	to	match	
variances	across	layers

‣ Need	to	ini=alize	to	values	that	aren’t	0	but	aren’t	too	large

‣ Use	Adam	as	your	op=mizer

‣ Consider	adding	dropout	layers	(at	input	or	hidden	layers;	never	at	
output).	Typically	0.2	-	0.5	are	good	ranges	for	dropout	probability

DANs

‣ Currently	we	think	of	words	as	“one-hot”	vectors

good	=	[0,	0,	0,	1,	0,	0,	…]

great	=	[0,	0,	0,	0,	0,	1,	…]

Word	Embeddings

‣ good	and	great	seem	as	dissimilar	as	good	and	the

‣ Neural	networks	are	built	to	learn	sophis=cated	nonlinear	func=ons	
of	con=nuous	inputs;	our	inputs	are	weird	and	discrete

the	=	[1,	0,	0,	0,	0,	0,	…]

good
enjoyable

bad

dog

great

is

‣ Want	a	vector	space	where	similar	words	have	similar	embeddings

great good~~

Word	Embeddings

‣ Next	lecture:	come	up	with	a	
way	to	produce	these	
embeddings

‣ For	each	word,	want	
“medium”	dimensional	vector	
(50-300	dims)	represen=ng	it

Deep	Averaging	Networks
‣ Deep	Averaging	Networks:	feedforward	neural	network	on	average	of	
word	embeddings	from	input

Iyyer	et	al.	(2015)

Deep	Averaging	Networks

Iyyer	et	al.	(2015)

‣Widely-held	view:	need	to	
model	syntac=c	structure	to	
represent	language

‣ Surprising	that	averaging	
can	work	as	well	as	this	sort	
of	composi=on

Sen=ment	Analysis

{

{
Bag-of-words

Tree-structured	
neural	networks

Wang	and	
Manning	(2012)

Kim	(2014)

Iyyer	et	al.	(2015)

No	pretrained  
embeddings

Deep	Averaging	Networks

Iyyer	et	al.	(2015)
‣ Will	return	to	composi=onality	with	syntax	and	LSTMs

Word	Embeddings	in	PyTorch

‣ torch.nn.Embedding:	maps	vector	of	indices	to	matrix	of	word	vectors

‣ n	indices	=>	n	x	d	matrix	of	d-dimensional	word	embeddings

Predator			is						a			masterpiece
1820 24 1 2047

‣ b	x	n	indices	=>	b	x	n	x	d	tensor	of	d-dimensional	word	embeddings

Next	Time

‣ Guest	lecture

‣ Next	Thursday:	word	embeddings

