CS388: Natural Language Processing

Lecture 6: NN
Implementation

Greg Durrett
TEXA

The University of Texas at Austin

Announcements

» Al due today at midnight

» A2 out at midnight

Recall: Feedforward NNs

P(y|x) = softmax(Wg(V f(x)))

num_classes

d hidden units probs
= 2
B v H e w :
g
| dxnmatrix nonlinearity num_classes x d
n features

(tanh, relu, ...) matrix

Recall: Training Feedforward NNs
P(y|x) = softmax(Wg(V f(x)))
» Maximize log likelihood of training data. For one point:
L(x,i") =log P(y = i"|x) = log (softmax(Wz) - ;)

» How to compute the gradient with respect to W and V?

Recall: Backpropagation
P(y|x) = softmax(Wg(V f(x)))

d hidden units

{ Faq W Hotma2

! oc
d s NDY et

This Lecture

» Neural net implementation / PyTorch 101

» Neural net training tips

» Deep averaging networks

Implementing Neural Networks:
PyTorch 101

Computation Graphs

» Computing gradients is hard!

» Automatic differentiation: instrument code to keep track of derivatives
y =X * X —_— (y,dy) = (x * x, 2 * x * dx)
codegen

» Computation is now something we need to reason about symbolically;
use a library like PyTorch (or Tensorflow)

» Ensuing code examples are on the course website: ffnn_example.py
under “Readings”

PyTorch

» Framework for defining computations that provides easy access to
derivatives

» Module: defines a neural (torch.nn.ModuIe

network (can use wrap
other modules which
implement predefined
layers)

Takes an example x and computes result
forward(x):

Computes gradient after forward() is called

» If forward() uses crazy

stuff, you have to write _ J

backward yourself

Computation Graphs in Pytorch

» Define forward pass for P(y|x) = softmax(Wg(V f(x)))

class FFNN(nn.Module):
def _ init_ (self, input_size, hidden_size, out_size):
super (FFNN, self). init_ ()
self.V = nn.Linear(input size, hidden size)
self.g = nn.Tanh() # or nn.ReLU(), sigmoid()...
self.W = nn.Linear(hidden size, out size)
self.softmax = nn.Softmax(dim=0)

def forward(self, x):
return self.softmax(self.W(self.g(self.V(x))))
(syntactic sugar for forward)

Input to Network

» Whatever you define with torch.nn needs its input as some sort of
tensor, whether it’s integer word indices or real-valued vectors

def form input(x) -> torch.Tensor:
Index words/embed words/etc.
return torch.from numpy(x).float()

» torch.Tensor is a different datastructure from a numpy array, but you can
translate back and forth fairly easily

» Note that translating out of PyTorch will break backpropagation; don’t
do this inside your Module

Training and Optimization

one-hot vector
of the label
(e.g., [0,1,0])

P(y|x) = softmax(Wg(V f(x)))

ffnn = FFNN(inp, hid, out)
optimizer = optim.Adam(ffnn.pgarameters(), lr=lr)
for epoch in range(0, num gpochs):
for (input, gold_label) in training data:
ffnn.zero grad() # clear gradient variables
probs = ffnn.forward(input)
loss = torch.neg(torch.log(probs)).dot(gold_label)
loss.backward()

.. negative log-likelihood of correct answer
optimizer.step()

Initialization in Pytorch

class FFNN(nn.Module):

def init (self, inp, hid, out):
super (FFNN, self). init ()
self.V = nn.Linear(inp, hid)
self.g nn.Tanh()
self.W = nn.Linear(hid, out)
self.softmax = nn.Softmax(dim=0)
nn.init.uniform(self.vV.weight)

» Initializing to a nonzero value is critical, more in a bit

Training a Model

Define modules, etc.
Initialize weights and optimizer
For each epoch:
For each batch of data:
Zero out gradient
Compute loss on batch
Autograd to compute gradients and take step on optimizer
[Optional: check performance on dev set to identify overfitting]

Run on dev/test set

Batching and Optimization
(blackboard)

Batching
» Batching: processing multiple examples in parallel (for training or test),
gives speedups due to more efficient matrix operations
» Need to make the computation graph process a batch at the same time

input is [batch_size, num feats]
gold label is [batch_size, num classes]
def make update(input, gold_label)

probs = ffnn.forward(input) # [batch size, num classes]

loss = torch.sum(torch.neg(torch.log(probs)).dot(gold label))

» Batch sizes range from 1-64 or so (depending on GPU memory, etc.)

Optimization Takeaways

» Need to initialize to values that aren’t O but aren’t too large

» Can do random uniform / normal initialization with appropriate scale;
also fancier initializers (Xavier Glorot initializer, Kaiming He) to match
variances across layers DAN

S

» Use Adam as your optimizer

» Consider adding dropout layers (at input or hidden layers; never at
output). Typically 0.2 - 0.5 are good ranges for dropout probability

Word Embeddings

» Want a vector space where similar words have similar embeddings

Word Embeddings

» Currently we think of words as “one-hot” vectors

the=1[1,0,0,0,0,0,..] ~
great ~ good great
good=[0,0,0,1,0,0,] » Next lecture: come up with a good
great=10,0,0,0,0,1,..] way to produce these enjoyable
embeddings
» good and great seem as dissimilar as good and the dog
» For each word, want
» Neural networks are built to learn sophisticated nonlinear functions med'um. dimensional _/eCt_Or
of continuous inputs; our inputs are weird and discrete (50-300 dims) representing it
bad
is

Deep Averaging Networks

» Deep Averaging Networks: feedforward neural network on average of
word embeddings from input

softmax
hy = f(Wa - hy + b3)
hl = f(W1 - av +b1)
4
=73y, %
i=1
LT T T P P I g
Predator is a masterpiece
a e c3 2 lyyer et al. (2015)

Deep Averaging Networks

» Widely-held view: need to
model syntactic structure to
represent language

softmax

|]+b)

c1
22,

softmax i FOW [Z] +8)

L.) softmax s
» Surprising that averaging n=fW [CJ +b)
can work as well as this sort

of composition

Predator is a masterpiece

1 C2 C3 Cq

lyyer et al. (2015)

Sentiment Analysis

Model RT SST SST IMDB Time
No pretrained fine bin ®)
: DAN-ROOT — 469 857 — 31
embeddings ~~ DAN-RAND 773 454 832 888 136
[DAN 803 477 863 894 _ 136] lyyer etal. (2015)
NBOW-RAND 762 423 814 889 91
B ¢ d NBOW 790 436 836 89.0 91
ag-or-words BiNB — 419 831 — — Wangand
[NBSVM-bi 794 — — 912 — .
Manning (2012)
RecNN* 777 432 824 — —
RecNTN* — 457 854 — —
_ DRecNN — 498 866 — 431
Tree-structured TreeLSTM — 50.6 86.9 — —
neural networks DCNN* — 485 869 894 —
PVEC* — 487 878 926 —)
[eNN-MC 8.1 474 881 — 2452] Kim (2014)
WRRBM* — — — 892 —

Deep Averaging Networks

Sentence DAN DRecNN Ground Truth
who knows what exactly godard is on about in this film, but ~ positive positive positive
his ‘words and images do @’® have to add up to ‘mesmerize
you.
it’s so (good that its relentless, (polished wit can withstand negative positive positive

@i6b only (nept school productions, but even oliver (parker’s

movie adaptation

too Bad, but thanks to some (lovely) Comedic moments and negative negative positive
several fine performances, it’s @b a €6taD 1689

this movie was @i6b good negative negative negative
this movie was [good positive positive positive
this movie was 6@ negative negative negative
the movie was @b 6ad negative negative positive

» Will return to compositionality with syntax and LSTMs
lyyer et al. (2015)

Word Embeddings in PyTorch

» torch.nn.Embedding: maps vector of indices to matrix of word vectors

Predator is a masterpiece
1820 24 1 2047
|
(T T T T I I

» nindices => n x d matrix of d-dimensional word embeddings

» b x nindices => b x n x d tensor of d-dimensional word embeddings

Next Time

» Guest lecture

» Next Thursday: word embeddings

