Recall: Feedforward NNs

\[P(y|x) = \text{softmax}(Wg(Vf(x))) \]

- \(P(y|x) = \text{softmax}(Wg(Vf(x))) \)
- Recall: Training Feedforward NNs

\[P(y|x) = \text{softmax}(Wg(Vf(x))) \]

- Maximize log likelihood of training data. For one point:
 \[\mathcal{L}(x, i^*) = \log P(y = i^*|x) = \log (\text{softmax}(Wz) \cdot e_{i^*}) \]

- How to compute the gradient with respect to \(W \) and \(V \)?
Recall: Backpropagation

\[P(y|x) = \text{softmax}(W g(V f(x))) \]

This Lecture

- Neural net implementation / PyTorch 101
- Neural net training tips
- Deep averaging networks

Computing Gradients

- Computing gradients is hard!
- Automatic differentiation: instrument code to keep track of derivatives
 \[y = x \times x \quad \text{codegen} \quad (y, dy) = (x \times x, 2 \times x \times dx) \]
- Computation is now something we need to reason about symbolically; use a library like PyTorch (or Tensorflow)
- Ensuing code examples are on the course website: ffnn_example.py under “Readings”
PyTorch

- Framework for defining computations that provides easy access to derivatives
- Module: defines a neural network (can use wrap other modules which implement predefined layers)
- If forward() uses crazy stuff, you have to write backward yourself

```python
class FFNN(nn.Module):
    def __init__(self, input_size, hidden_size, out_size):
        super(FFNN, self).__init__()
        self.V = nn.Linear(input_size, hidden_size)
        self.g = nn.Tanh()  # or nn.ReLU(), sigmoid()...
        self.W = nn.Linear(hidden_size, out_size)
        self.softmax = nn.Softmax(dim=0)

    def forward(self, x):
        return self.softmax(self.W(self.g(self.V(x))))
```

Computational Graphs in Pytorch

- Define forward pass for $P(y|x) = \text{softmax}(Wg(Vf(x)))$

```python
class FFNN(nn.Module):
    def __init__(self, input_size, hidden_size, out_size):
        super(FFNN, self).__init__()
        self.V = nn.Linear(input_size, hidden_size)
        self.g = nn.Tanh()  # or nn.ReLU(), sigmoid()...
        self.W = nn.Linear(hidden_size, out_size)
        self.softmax = nn.Softmax(dim=0)

    def forward(self, x):
        return self.softmax(self.W(self.g(self.V(x))))
```

Input to Network

- Whatever you define with torch.nn needs its input as some sort of tensor, whether it's integer word indices or real-valued vectors
- `def form_input(x) -> torch.Tensor:
 # Index words/word embeddings/etc.
 return torch.from_numpy(x).float()
`
- torch.Tensor is a different data structure from a numpy array, but you can translate back and forth fairly easily
- Note that **translating out of PyTorch will break backpropagation**; don’t do this inside your Module

Training and Optimization

- $P(y|x) = \text{softmax}(Wg(Vf(x)))$
- `ffnn = FFNN(inp, hid, out)`
- `optimizer = optim.Adam(ffnn.parameters(), lr=lr)`
- For epoch in range(0, num_epochs):
 - For `(input, gold_label) in training_data`:
 - `ffnn.zero_grad()` # clear gradient variables
 - `loss = torch.neg(torch.log(probs)).dot(gold_label)`
 - `loss.backward()`
 - `optimizer.step()`
Initialization in Pytorch

```python
class FFNN(nn.Module):
    def __init__(self, inp, hid, out):
        super(FFNN, self).__init__()
        self.V = nn.Linear(inp, hid)
        self.g = nn.Tanh()
        self.W = nn.Linear(hid, out)
        self.softmax = nn.Softmax(dim=0)
        nn.init.uniform(self.V.weight)

    # Initializing to a nonzero value is critical, more in a bit
```

Training a Model

Define modules, etc.
Initialize weights and optimizer
For each epoch:
- For each batch of data:
 - Zero out gradient
 - Compute loss on batch
 - Autograd to compute gradients and take step on optimizer
 [Optional: check performance on dev set to identify overfitting]
Run on dev/test set

Batching and Optimization (blackboard)

- **Batching**: processing multiple examples in parallel (for training or test), gives speedups due to more efficient matrix operations
- Need to make the computation graph process a batch at the same time

```python
# input is [batch_size, num_feats]
# gold_label is [batch_size, num_classes]
def make_update(input, gold_label):
    ...  
    probs = ffnn.forward(input)  # [batch_size, num_classes]
    loss = torch.sum(torch.neg(torch.log(probs)).dot(gold_label))
    ...

# Batch sizes range from 1-64 or so (depending on GPU memory, etc.)
```
Optimization Takeaways

- Need to initialize to values that aren’t 0 but aren’t too large
 - Can do random uniform / normal initialization with appropriate scale; also fancier initializers (Xavier Glorot initializer, Kaiming He) to match variances across layers
- Use Adam as your optimizer
- Consider adding dropout layers (at input or hidden layers; never at output). Typically 0.2 - 0.5 are good ranges for dropout probability

Word Embeddings

- Currently we think of words as “one-hot” vectors

 \[
 \text{the} = [1, 0, 0, 0, 0, 0, ...] \\
 \text{good} = [0, 0, 0, 1, 0, 0, ...] \\
 \text{great} = [0, 0, 0, 0, 0, 1, ...]
 \]
- \text{good} and \text{great} seem as dissimilar as \text{good} and \text{the}
- Neural networks are built to learn sophisticated nonlinear functions of continuous inputs; our inputs are weird and discrete

Word Embeddings

- Want a vector space where similar words have similar embeddings

 \text{great} \approx \text{good}

- Next lecture: come up with a way to produce these embeddings
- For each word, want “medium” dimensional vector (50-300 dims) representing it
Deep Averaging Networks

- Deep Averaging Networks: feedforward neural network on average of word embeddings from input

Iyyer et al. (2015)

Deep Averaging Networks

- Widely-held view: need to model syntactic structure to represent language

- Surprising that averaging can work as well as this sort of composition

Iyyer et al. (2015)

Sentiment Analysis

<table>
<thead>
<tr>
<th>Model</th>
<th>RT</th>
<th>SST</th>
<th>SST</th>
<th>IMDB</th>
<th>Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAN-ROOT</td>
<td>---</td>
<td>46.9</td>
<td>85.7</td>
<td>---</td>
<td>31</td>
</tr>
<tr>
<td>DAN-RAND</td>
<td>77.3</td>
<td>45.4</td>
<td>83.2</td>
<td>88.8</td>
<td>136</td>
</tr>
<tr>
<td>DAN</td>
<td>80.0</td>
<td>47.7</td>
<td>86.3</td>
<td>89.4</td>
<td>136</td>
</tr>
<tr>
<td>NBOW-RAND</td>
<td>76.2</td>
<td>42.3</td>
<td>81.4</td>
<td>88.9</td>
<td>91</td>
</tr>
<tr>
<td>NBOW</td>
<td>79.0</td>
<td>43.6</td>
<td>83.6</td>
<td>89.0</td>
<td>91</td>
</tr>
<tr>
<td>BNB</td>
<td>---</td>
<td>41.9</td>
<td>83.1</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>NBVSMM-bi</td>
<td>79.4</td>
<td>---</td>
<td>---</td>
<td>91.2</td>
<td>---</td>
</tr>
<tr>
<td>RecNN*</td>
<td>77.7</td>
<td>43.2</td>
<td>82.4</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>RecNN*</td>
<td>---</td>
<td>45.7</td>
<td>85.4</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>DRecNN</td>
<td>49.8</td>
<td>86.6</td>
<td>---</td>
<td>431</td>
<td>---</td>
</tr>
<tr>
<td>TreeLSTM</td>
<td>50.6</td>
<td>86.9</td>
<td>89.4</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>DCNN*</td>
<td>---</td>
<td>48.5</td>
<td>86.9</td>
<td>89.4</td>
<td>---</td>
</tr>
<tr>
<td>PVFC*</td>
<td>48.7</td>
<td>87.8</td>
<td>92.6</td>
<td>53.2</td>
<td>---</td>
</tr>
<tr>
<td>CNN-MC</td>
<td>81.1</td>
<td>47.4</td>
<td>88.1</td>
<td>2.452</td>
<td>---</td>
</tr>
<tr>
<td>WRRBM*</td>
<td>---</td>
<td>---</td>
<td>89.2</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Wang and Manning (2012)

Kim (2014)

Deep Averaging Networks

- Will return to compositionality with syntax and LSTMs

Iyyer et al. (2015)
Word Embeddings in PyTorch

- torch.nn.Embedding: maps vector of indices to matrix of word vectors
 - Predator is a masterpiece
 - 1820 24 1 2047
 - n indices => n x d matrix of d-dimensional word embeddings
 - b x n indices => b x n x d tensor of d-dimensional word embeddings

Next Time

- Guest lecture
- Next Thursday: word embeddings