

۲	PyTorch				
 Framework for defining co derivatives 	► Define	forward pass fo			
 Module: defines a neural network (can use wrap other modules which implement predefined layers) If forward() uses crazy 	prch.nn.Module # Takes an example x and computes result forward(x): # Computes gradient after forward() is called backward(): # produced automatically	def	<pre>init(se super(FFNN, self.V = nn self.g = nn self.W = nn self.softma</pre>		
stuff, you have to write backward yourself		def	forward(sel return self		

Computation Graphs in Pytorch

• Define forward pass for $P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$

ass FFNN(nn.Module): def __init__(self, input_size, hidden_size, out_size): super(FFNN, self).__init__() self.V = nn.Linear(input_size, hidden_size) self.g = nn.Tanh() # or nn.ReLU(), sigmoid()... self.W = nn.Linear(hidden_size, out_size) self.softmax = nn.Softmax(dim=0) def forward(self, x):

```
return self.softmax(self.W(self.g(self.V(x))))
(syntactic sugar for forward)
```


Initialization in Pytorch

```
class FFNN(nn.Module):
    def __init__(self, inp, hid, out):
        super(FFNN, self).__init__()
        self.V = nn.Linear(inp, hid)
        self.g = nn.Tanh()
        self.W = nn.Linear(hid, out)
        self.softmax = nn.Softmax(dim=0)
        nn.init.uniform(self.V.weight)
```

Initializing to a nonzero value is critical, more in a bit

Training a Model

Define modules, etc. Initialize weights and optimizer For each epoch: For each batch of data: Zero out gradient Compute loss on batch Autograd to compute gradients and take step on optimizer [Optional: check performance on dev set to identify overfitting] Run on dev/test set

	Batching
	 Batching: processing multiple examples in parallel (for training or test), gives speedups due to more efficient matrix operations
Batching and Optimization	Need to make the computation graph process a batch at the same time
(blackboard)	<pre># input is [batch_size, num_feats] # gold_label is [batch_size, num_classes] def make_update(input, gold_label) probs = ffnn.forward(input) # [batch_size, num_classes] loss = torch.sum(torch.neg(torch.log(probs)).dot(gold_label)) > Batch sizes range from 1-64 or so (depending on GPU memory, etc.)</pre>

۲

۲	Optimization Takeaways
• Need to in	itialize to values that aren't 0 but aren't too large
Can do also fan	random uniform / normal initialization with appropriate scale; ncier initializers (Xavier Glorot initializer, Kaiming He) to match
variance	es across layers
Use Adam	as your optimizer
 Consider a Output) Ty 	dding dropout layers (at input or hidden layers; never at
ουτρατ). Τγ	pically 0.2 - 0.5 are good fallges for dropout probability

	Sentiment Analysis							Deep Averaging Networks				
	Model	RT	SST	SST	IMDB	Time	-	Sentence	DAN	DRecNN	Ground Truth	
No pretrained embeddings 🥆			fine	bin		(s)	 who knows what exactly godard is on about in this film, b his words and images do 1 have to add up to mesmerizyou. Iyyer et al. (2015) Wang and Manning (2012) Kim (2014) Kim (2014) 	positive	positive	positive		
	DAN-ROOT DAN-RAND DAN		46.9 45.4 47.7	85.7 83.2 86.3	 88.8 89.4	31 136 136		 his words and images do n have to add up to mesmerize you. it's so good that its relentless, polished wit can withstand not only inept school productions, but even oliver parker's movie adaptation too bad, but thanks to some lovely comedic moments and several fine performances, it's not a total loss 	negative	positive	positive	
Bag-of-words	NBOW-RAND NBOW BiNB NBSVM-bi	76.2 79.0 — 79.4	42.3 43.6 41.9	81.4 83.6 83.1 —	88.9 89.0 91.2	91 91 —			negative	negative	positive	
Tree-structured neural networks	RecNN* RecNTN* DRecNN TreeLSTM DCNN* PVEC* CNN-MC WRRBM*	77.7 — — — — 81.1 —	43.2 45.7 49.8 50.6 48.5 48.7 47.4	82.4 85.4 86.6 86.9 86.9 87.8 88.1		 431 2,452 		this movie was foot good this movie was good this movie was bad the movie was foot bad • Will return to compositionality with syntax a	negative positive negative negative and LSTN	negative positive negative negative As	negative positive negative positive er et al. (2015)	

