

	Similarity						
Mathad	WordSim	WordSim	Bruni et al.	Radinsky et al.	Luong et al.	Hill et al.	
Method	Similarity	Relatedness	MEN	M. Turk	Rare Words	SimLex	
PPMI	.755	.697	.745	.686	.462	.393	
SVD	.793	.691	.778	.666	.514	.432	
SGNS	.793	.685	.774	.693	.470	.438	
GloVe	.725	.604	.729	.632	.403	.398	

SVD = singular value decomposition on PMI matrix

 GloVe does not appear to be the best when experiments are carefully controlled, but it depends on hyperparameters + these distinctions don't matter in practice

Levy et al. (2015)

Takeaways
 Continuous bag-of-words, Skip-gram, and Skip-gram with negative sampling are all similar ways to learn embeddings
Matrix factorization approaches like GloVe are most standard
 Averaging inputs to feedforward networks can work well, will see other approaches later
 Later in the class: approaches to create "contextualized" word embeddings