Midterm for CS378: Natural Language Processing

Instructions:

- You will have 80 minutes to complete the exam.
- This exam is to be completed individually by each student.
- You are allowed one 8.5”x11” double-sided note sheet.
- You are not allowed calculators or other electronic devices.
- Partial credit will be given for short-answer and long-answer questions, so please show work in the exam.
- For short-answer and long-answer questions, please box or circle your final answer (unless it is an explanation).

Grading Sheet (for instructor use only)

<table>
<thead>
<tr>
<th>Question</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>80</td>
<td></td>
</tr>
</tbody>
</table>

Name: __

EID: __________________________
Part 1: Multiple Choice (20 points)

1. (20 points) Answer the following multiple choice questions (2 points each) by writing the answer in the provided blank.

Suppose you have the following training data for Naïve Bayes:

I liked the movie [LABEL=+]
I hated the movie because it was an action movie [LABEL=-]
Really cool movie [LABEL=+]

(1) What is the unsmoothed maximum likelihood estimate of \(P(+) \) for this data?
 A. 1/3 B. 1/2 C. 2/3 D. 1

(2) What is the unsmoothed maximum likelihood estimate of \(P(\text{movie}|+) \) for this data?
 A. 2/17 B. 1/5 C. 2/7 D. 1/2

(3) Suppose we are given an unseen input sentence the movie. What is the joint probability \(P(-, \text{the movie}) \)?
 A. 2/300 B. 4/98 C. 1/12 D. 1/3

(4) What prediction will the model make on the movie?
 A. Positive B. Negative

(5) Consider the following code snippet to define a neural network in PyTorch:

```python
class MyNetwork(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        # Boilerplate not shown
        self.l1 = nn.Linear(input_size, hidden_size)
        self.nonlin = nn.Tanh()
        self.l2 = nn.Linear(hidden_size, output_size)
        self.log_sm = nn.LogSoftmax(dim=0)
        # Initialization, etc. not shown

    def forward(self, x):
        return self.log_sm(self.nonlin(self.l2(self.nonlin(self.l1(x)))))
```

Let \(b \) be a batch size \(> 1 \). Which of the following tensor shapes can be input to this network without causing a code crash?

I. [inp] II. [b, inp] III. [inp, b]

A. I B. I and II C. I and III D. II and III E. I, II, and III
(6) What is “wrong” with the above network compared to standard neural network models?

A. Tanh is not differentiable so backpropagation will not work
B. There is a dimension mismatch which will lead to a crash
C. Reusing the self.nonlin layer will cause a crash
D. The presence of the nonlinearity before the softmax results in a nonstandard model

(7) Indicate the correct tree for the most natural interpretation of the following English sentence:

A.
```
  S
 / \ 
NP  VP
 |   |
PRP VBD took
She NP

NP DT the NN lesson PP
IN NP heart
```

B.
```
  S
 / \ 
NP  VP
 |   |
PRP VBD took
She NP

NP DT the NN lesson PP
IN NP heart
```

C.
```
  S
 / \ 
NP  VP
 |   |
PRP VBD took
She NP

NP DT the NN lesson PP
IN NP heart
```

D.
```
  S
 / \ 
NP  VP
 |   |
PRP VBD took
She NP

NP DT the NN lesson PP
IN NP heart
```

(8) Suppose we binarize tree (D) from the previous question with $h = 0$ according to the technique discussed in class. What new constituent will be introduced?

A. S B. VP C. NP D. PP

(9) Suppose you are running a shift-reduce dependency parser with the arc-standard system on a sentence of length n. How many shift operations are needed?

A. Cannot be determined B. $n - 1$ C. n D. $n + 1$ E. $2n - 1$ F. $2n$
(10) Suppose we have the following word vectors: \(\text{swam} = [1, 0, 0]; \text{ran} = [1, 1, 0]; \text{ate} = [0, 0, 2]\). Now we get two new examples of a new word \(wug\): \(wug \text{ swam}, wug \text{ ate}\). We are going to learn parameters just for \(wug\) without changing the rest of our vector space. Which context embedding for \(wug\) gives the best value of the skip-gram objective on these two examples? Recall that skip-gram model is defined by the following probability distribution over contexts given a word:

\[
P(c | w) = \frac{e^{c \cdot w}}{\sum_{c' \in V} e^{c' \cdot w}}
\]

A. \([10, 0, 5]\)
B. \([10, -10, 0]\)
C. \([10, -10, 5]\)
D. \([0, -10, 5]\)

Part 2: Short Answer (25 points)

2. (25 points) Answer the following short-answer questions.

a. (5 points) Suppose you are doing bag-of-words text classification on a document. The raw input is a single string containing the text of the entire document. Describe in one or two sentences the pipeline to go from the raw input to a feature vector.

b. (3 points) Suppose you have a neural network that is overfitting to the training data. Describe two ways to fix this situation.

c. (3 points) You are training a neural network with Adam and watching the negative log likelihood of the training set over epochs. Rather than decreasing, it seems to fluctuate around where it started. What is one change you could make to your training procedure that could fix this?

d. (3 points) Describe one way a neural network could be initialized poorly and what effect that could have.
e. (3 points) Describe the reason why skip-gram with negative sampling is faster to train than the original skip-gram model.

f. (3 points) Consider the following sentence:

```
ROOT
The lazy cat slept
```

Give a correct sequence of shift-reduce operations that will lead to the correct parse. Recall that the start state is Stack=[ROOT] and Buffer=[the lazy cat slept].

g. (5 points) Fill in the following table about algorithms discussed in this class. Give the best single answer for each cell by filling in the blank or circling a value (for the Model Type column). Possible values for the blank cells are given below. You can use the acronyms for SGD and MLE.

<table>
<thead>
<tr>
<th>Method</th>
<th>Task Type</th>
<th>Model Type</th>
<th>Training</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logistic regression</td>
<td></td>
<td>Generative / Discriminative</td>
<td></td>
</tr>
<tr>
<td>Naive Bayes</td>
<td></td>
<td>Generative / Discriminative</td>
<td></td>
</tr>
<tr>
<td>HMMs</td>
<td></td>
<td>Generative / Discriminative</td>
<td></td>
</tr>
<tr>
<td>Feedforward networks</td>
<td></td>
<td>Generative / Discriminative</td>
<td></td>
</tr>
</tbody>
</table>

Options: SGD (stochastic gradient decent), tagging, MLE (maximum likelihood estimation), classification
Part 3: Long Answer (36 points)

3. (15 points) Below is the Viterbi algorithm. Assume that the tags are indexed into the set of integers from 1 to t.

Algorithm 1: Viterbi Algorithm

1: `function` VITERBI(x, S, T, E)
 \hspace{1em} \triangleright x: sentence of length n, S: initial log probs, T: transition log probs, E: emission log probs
2: // Initialize v, a $n \times t$ matrix
3: for $y = 1$ to t do
4: \hspace{1em} $v[1, y] = S[y] + E[y, x_1]$
5: end for
6: for $i = 2$ to n do
7: \hspace{1em} for $y = 1$ to t do
8: \hspace{2em} $v[i, y] = E[y, x_i] + \max_{y_{\text{prev}}} (T[y, y_{\text{prev}}] + v[i-1, y_{\text{prev}}])$
9: end for
10: end for
11: Best final state = $\arg\max_y (v[n, y] + T[\text{STOP}, y])$
12: Reconstruct answer with tracked argmaxes (not shown)
13: `end function`

a. (2 points) What is the runtime of the Viterbi algorithm?

b. (4 points) Suppose certain state transitions are completely illegal; that is, $P(y | y_{\text{prev}}) = 0$ for those state pairs. Modify the above algorithm to take advantage of this information. You should write your answer as a description of which line numbers to modify and either a rewriting of the appropriate lines or a clear, precise textual description of what needs to change.

Two possibly useful notions we will define for you: $N(y) =$ the set of tags that can legally precede y, $B(y) =$ set of tags that can legally follow y.
c. (2 points) Suppose each tag has at most $k < t$ legal transitions it can make. What is the runtime of this modified version of Viterbi?

d. (5 points) Suppose we are building a trigram tagger. The normal transition probabilities $P(y_i|y_{i-1})$ are replaced with probabilities that depend on the previous two tags $P(y_i|y_{i-2}, y_{i-1})$. Emissions are unchanged. Describe a modification to the algorithm to implement this.

e. (2 points) Given the algorithm in part (d), suppose we limit the legal tag transitions as in part (c). What is the runtime of your new Viterbi algorithm? Give the best runtime you can achieve.
4. (8 points) We are trying to classify names that we see as either the names of people or the names of places using binary classification. Let PERSON be the positive class in this scenario. Here are the examples in our dataset:

1. Hampshire [Label=PLACE (−)]
2. Waterton [Label=PLACE (−)]
3. Washington [Label=PERSON (+)]
4. Newton [Label=PLACE (−)]

Our feature representation consists of 3-gram suffixes; for example, the first example above is represented by the single feature [ire] and the second example by the single feature [ton]. We define a weight vector w over this feature space. Our decision rule is \(w^\top x \geq 0 \), so we predict PERSON when the score is zero or greater.

a. (5 points) Suppose we initialize \(w = 0 \) (the zero vector) and go through one epoch of perceptron training with step size (\(\alpha \)) of 1 on the examples in the order 1, 2, 3, 4. What is the final perceptron weight vector?

c. (3 points) Can perceptron achieve perfect accuracy on this training data with this feature representation? If yes, give a weight vector that does this. If no, name an additional feature that would allow us to achieve perfect classification accuracy on this dataset.
5. (12 points) Consider the following grammar:

```
VP → V N [0.25]  
VP → V NP [0.25]  
VP → V PP [0.25]  
VP → VP PP [0.25]  
NP → N PP [1.0]  
PP → P N [1.0]  
N → reports [0.5]  
N → Mars [0.5]  
P → on [1.0]  
V → wrote [0.5]  
V → reports [0.5]
```

Define a PCFG with this grammar including the nonterminals \{VP, NP, PP, N, P, V\}, the terminals \{reports, Mars, on, wrote\}, the start symbol VP, and the probabilities as given above. That is, this is a grammar to generate verb phrases. **For the purposes of this problem, you can assume** \(\log 0.5 = -1\) (i.e., use base 2 for the logarithm).

a. (3 points) Consider the new verb phrase *reports on Mars*. Parse this sentence with the grammar. Write **both** the highest-probability parse of the sentence and the joint probability of that parse and the words \(P(T, x)\).
b. (5 points) Consider the new sentence *wrote reports on Mars*. Parse this sentence with the grammar. Write both the highest-probability parse of the sentence and the joint probability of that parse and the words $P(T, x)$.

c. (2 points) How many parses of *wrote reports on Mars* can we build with this grammar?

d. (2 points) When parsing *wrote reports on Mars*, what is the largest constituent (in terms of number of words) that we can build that is not part of a valid complete parse?

[BONUS] (2 points) What is Google’s dependency parser called? Either name is acceptable.