CS388: Natural Language Processing Lecture 1: Introduction

Greg Durrett

Administrivia

- Lecture: Tuesdays and Thursdays 9:30am 10:45am
- Course website: http://www.cs.utexas.edu/~gdurrett/courses/sp2021/cs388.shtml
- Gradescope: you should've gotten an email
- Piazza: link on the course website
- My office hours: Office hours: Tuesday 1pm-2pm, Wednesday 3:30pm-4:30pm
 - Note: my OHs today are 12:30pm-1:30pm
- TA: Xi Ye. See course website for OHs

Course Requirements

- ▶ 391L Machine Learning (or equivalent)
- ▶ 311 or 311H Discrete Math for Computer Science (or equivalent)
- Python experience
- Additional prior exposure to probability, linear algebra, optimization, linguistics, and NLP useful but not required
- Mini1 is out now (due January 28), please look at it soon
 - If this seems like it'll be challenging for you, come and talk to me (this is smaller-scale than the projects, which are smaller-scale than the final project)

What's the goal of NLP?

Be able to solve problems that require deep understanding of text

Question Answering

When was Abraham Lincoln born?

Name
Birthday

Lincoln, Abraham
Washington, George
Adams, John

Adams, John

Name
Birthday

Map to Birthday field

February 12, 1809

10/30/1735

How many visitors centers are there in Rocky Mountain National Park?

Machine Translation

The Political Bureau of the CPC Central Committee

July 30 hold a meeting

中共中央政治局7月30日召开会议,会议分析研究当前经

济形势,部署下半年经济工作。

People's Daily, August 10, 2020

The Political Bureau of the CPC Central Committee held a meeting on July 30 to analyze and study the current economic situation and plan economic work in the second half of the year.

Automatic Summarization

POLITICS

Google Critic Ousted From Think Tank Funded by the Tech Giant

WASHINGTON — In the hours after European antitrust regulators levied a record \$2.7 billion fine against Google in late June, an influential Washington think tank learned what can happen when a tech giant that shapes public policy debates with its enormous wealth is criticized.

• • •

But not long after one of New America's scholars <u>posted a statement</u> on the think tank's website praising the European Union's penalty against Google, Mr. Schmidt, who had been chairman of New America until 2016, communicated his displeasure with the statement to the group's president, Anne-Marie Slaughter, according to the scholar.

• • •

Ms. Slaughter told Mr. Lynn that "the time has come for Open Markets and New America to part ways," according to an email from Ms. Slaughter to Mr. Lynn. The email suggested that the entire Open Markets team — nearly 10 full-time employees and unpaid fellows — would be exiled from New America.

compress text provide missing context

One of New America's writers posted a statement critical of Google. Eric Schmidt, Google's CEO, was displeased.

The writer and his team were dismissed.

paraphrase to provide clarity

NLP Analysis Pipeline

Text Text Analysis Syntactic parses Coreference resolution Entity disambiguation Discourse analysis

Applications Summarize Extract information Answer questions Identify sentiment

Translate

- NLP is about building these pieces!
- All of these components are modeled with statistical approaches trained with machine learning

How do we represent language?

Text

Labels

the movie was good

Beyoncé had one of the best videos of all time subjective

Sequences/tags

PERSON

Tom Cruise stars in the new Mission Impossible film

WORK_OF_ART

 $\lambda x. flight(x) \land dest(x)=Miami$ flights to Miami

How do we use these representations?

- Main question: What representations do we need for language? What do we want to know about it?
- ▶ Boils down to: what ambiguities do we need to resolve?

Why is language hard? (and how can we handle that?)

Language is Ambiguous!

 Hector Levesque (2011): "Winograd schema challenge" (named after Terry Winograd, the creator of SHRDLU)

The city council refused the demonstrators a permit because they advocated violence

The city council refused the demonstrators a permit because they feared violence

The city council refused the demonstrators a permit because they _____ violence

- > >5 datasets in the last two years examining this problem and commonsense reasoning
- Referential ambiguity

Language is Ambiguous!

N N V N N V ADJ N Teacher Strikes Idle Kids

body/ body/
position weapon
Iraqi Head Seeks Arms

Syntactic and semantic ambiguities: parsing needed to resolve these, but need context to figure out which parse is correct

Language is Really Ambiguous!

▶ There aren't just one or two possibilities which are resolved pragmatically

It is really nice out

It is really nice out

It's really nice

The weather is beautiful

It is really beautiful outside

He makes truly beautiful

It fact actually handsome

Combinatorially many possibilities, many you won't even register as ambiguities, but systems still have to resolve them

Lots of data!

SOURCE	Cela constituerait une solution transitoire qui permettrait de conduire à terme à une charte à valeur contraignante.
HUMAN	That would be an interim solution which would make it possible to work towards a binding charter in the long term .
1x DATA	[this] [constituerait] [assistance] [transitoire] [who] [permettrait] [licences] [to] [terme] [to] [a] [charter] [to] [value] [contraignante] [.]
10x DATA	[it] [would] [a solution] [transitional] [which] [would] [of] [lead] [to] [term] [to a] [charter] [to] [value] [binding] [.]
100x DATA	[this] [would be] [a transitional solution] [which would] [lead to] [a charter] [legally binding] [.]
1000x DATA	[that would be] [a transitional solution] [which would] [eventually lead to] [a binding charter] [.]

World knowledge: have access to information beyond the training data

Need commonsense knowledge

Grounding: learn what fundamental concepts actually mean in a data-driven way

Golland et al. (2010)

McMahan and Stone (2015)

- Linguistic structure
- ...but computers probably won't understand language the same way humans do
- However, linguistics tells us what phenomena we need to be able to deal with and gives us hints about how language works
 - a. John has been having a lot of trouble arranging his vacation.
 - b. He cannot find anyone to take over his responsibilities. (he = John) C_b = John; C_f = {John}
 - c. He called up Mike yesterday to work out a plan. (he = John) C_b = John; C_f = {John, Mike} (CONTINUE)
 - d. Mike has annoyed him a lot recently. $C_b = John$; $C_f = \{Mike, John\}$ (RETAIN)
 - e. He called John at 5 AM on Friday last week. (he = Mike) C_b = Mike; C_f = {Mike, John} (SHIFT)

What techniques do we use? (to combine data, knowledge, linguistics, etc.)

A brief history of (modern) NLP

Supervised vs. Unsupervised

Supervised techniques work well on very little data (even neural networks)

Fully unsupervised techniques have fallen out of favor

Pretraining

Language modeling: predict the next word in a text $P(w_i|w_1,\ldots,w_{i-1})$

 $P(w \mid I \text{ want to go to}) = 0.01 \text{ Hawai'i}$

0.005 LA

0.0001 class

: use this model for other purposes

 $P(w \mid \text{the acting was horrible, I think the movie was}) = 0.1 bad$

- Model understands some sentiment?
- Train a neural network to do language modeling on massive unlabeled text, finetune it to do {tagging, sentiment, question answering, ...}

Peters et al. (2018), Devlin et al. (2019)

0.001 good

Interpretability

When we have complex models, how do we understand their decisions?

The movie is mediocre, maybe even bad.

Negative 99.8%

The movie is mediocre, maybe even bad.

Negative 98.0%

Negative 98.7%

Positive 63.4%

Positive 74.5%

Negative 97.9%

Interpretability

- When we have complex models, how do we understand their decisions?
- "Attribution": understand what parts of the input contribute to a prediction
 - Why was it class A instead of class B?
 - What is the "counterfactual" scenario we are considering (the foil)?

```
I drank tea because I don't like coffee
I drank tea because I was thirsty (Jacovi and Goldberg, 2020))
```

- Dataset biases: does our data have flaws that prevent the model from doing the right thing?
- Probing: what representations get learned in deep models?

Where are we?

- NLP consists of: analyzing and building representations for text, solving problems involving text
- These problems are hard because language is ambiguous, requires drawing on data, knowledge, and linguistics to solve
- Knowing which techniques use requires understanding dataset size, problem complexity, and a lot of tricks!
- NLP encompasses all of these things

NLP vs. Computational Linguistics

- NLP: build systems that deal with language data
- CL: use computational tools to study language

NLP vs. Computational Linguistics

Computational tools for other purposes: literary theory, political science...

Outline

ML and structured
prediction for NLP

Date Topics Jan 19 Introduction Jan 21 **Binary Classification Multiclass Classification** Jan 26 Jan 28 Sequence Models 1: HMMs Feb 2 Sequence Models 2: CRFs Feb 4 Neural 1: Feedforward

Neural nets

Feb 9 Neural 2: Word Embeddings; Bias

Feb 11 Neural 3: RNNs

Feb 16 Neural 4: Language Modeling, ELMo

Feb 18 Neural 5: Interpreting NNs

Outline: Syntax + Semantics

Feb 23	Trees 1: Constituency, PCFGs
Feb 25	Trees 2: Better grammars, Dependency
Mar 2	Trees 3: Shift-reduce, State-of-the-art parsers
Mar 4	Semantics 1
Mar 9	Semantics 2 / Seq2seq 1
Mar 11	Seq2seq 2: Attention
Mar 16	NO CLASS
Mar 18	NO CLASS

Outline: Applications

Mar 23	Seq2seq 3: Degeneration / Annotation, Dataset Bias
Mar 25	MT 1: Phrase-based
Mar 30	MT 2: Neural, Transformers
April 1	Pre-training 1: BERT, GPT
April 6	Pre-training 2: BART/T5 and beyond
April 8	Generation 1: Dialogue, Ethics
April 13	Generation 2: Summarization
April 15	QA 1: Reading comprehension
April 20	QA 2: Multi-hop, etc.
April 22	Guest Lecture: Jason Baldridge (Google)
April 27	Multilingual / Cross-lingual models
April 29	Wrapup + Ethics
May 4	FP presentations 1
May 6	FP presentations 2

Ethics

▶ E.g., "toxic degeneration": systems can generate {racist, sexist, ...} content

GENERATION OPTIONS:				
Model:	GPT-2 ~	Toxicity:	Work Safe Toxic	Very Toxic
Prompt:	I'm sick of all the p ∨		Toxic generations may be triggering.	

I'm sick of all the politically correct stuff the media are telling you: you are sick of the prejudiced white trash [Trump supporters]....|

https://toxicdegeneration.allenai.org/

We will touch on ethical issues throughout the course

Course Goals

- Cover fundamental machine learning techniques used in NLP
- Understand how to look at language data and approach linguistic phenomena
- Cover modern NLP problems encountered in the literature: what are the active research topics in 2021?
- Make you a "producer" rather than a "consumer" of NLP tools
 - ▶ The four assignments should teach you what you need to know to understand nearly any system in the literature (e.g.: state-of-the-art NER system = project 1 + mini 2 + BERT, basic MT system = project 2)

Assignments

- Two minis (10% each), two projects (20% each)
 - Implementation-oriented, with an open-ended component to each
 - Mini 1 (classification) is out NOW
 - ▶ 1 week for minis, ~2 weeks per project, 5 "slip days" for automatic extensions
- Grading:
 - Minis: largely graded based on code performance
 - Projects: graded on a mix of code performance, writeup, extension

These projects require understanding of the concepts, ability to write performant code, and ability to think about how to debug complex systems. **They are challenging, so start early!**

Assignments

- Final project (40%)
 - ▶ Groups of 2 preferred, 1 is possible
 - ▶ (Brief!) proposal to be approved by me by the midpoint of the semester
 - Written in the style and tone of an ACL paper

Conduct

A climate conducive to learning and creating knowledge is the right of every person in our community. Bias, harassment and discrimination of any sort have no place here.

The College of Natural Sciences is steadfastly committed to enriching and transformative educational and research experiences for every member of our community. Find more resources to support a diverse, equitable and welcoming community within Texas Science and share your experiences at cns.utexas.edu/diversity

Survey (on Instapoll)

- 1. Name
- 2. Fill in: I am a [CS / ____] [PhD / masters / undergrad] in year [1 2 3 4 5+]
- 3. Write one reason you want to take this class or one thing you want to get out of it
- 4. One interesting fact about yourself, or what you like to do in your spare time